Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
300 result(s) for "Polymyositis - immunology"
Sort by:
Common and Distinct Clinical Features in Adult Patients with Anti-Aminoacyl-tRNA Synthetase Antibodies: Heterogeneity within the Syndrome
To identify similarities and differences in the clinical features of adult Japanese patients with individual anti-aminoacyl-tRNA synthetase antibodies (anti-ARS Abs). This was a retrospective analysis of 166 adult Japanese patients with anti-ARS Abs detected by immunoprecipitation assays. These patients had visited Kanazawa University Hospital or collaborating medical centers from 2003 to 2009. Anti-ARS Ab specificity included anti-Jo-1 (36%), anti-EJ (23%), anti-PL-7 (18%), anti-PL-12 (11%), anti-KS (8%), and anti-OJ (5%). These anti-ARS Abs were mutually exclusive, except for one serum Ab that had both anti-PL-7 and PL-12 reactivity. Myositis was closely associated with anti-Jo-1, anti-EJ, and anti-PL-7, while interstitial lung disease (ILD) was correlated with all 6 anti-ARS Abs. Dermatomyositis (DM)-specific skin manifestations (heliotrope rash and Gottron's sign) were frequently observed in patients with anti-Jo-1, anti-EJ, anti-PL-7, and anti-PL-12. Therefore, most clinical diagnoses were polymyositis or DM for anti-Jo-1, anti-EJ, and anti-PL-7; clinically amyopathic DM or ILD for anti-PL-12; and ILD for anti-KS and anti-OJ. Patients with anti-Jo-1, anti-EJ, and anti-PL-7 developed myositis later if they had ILD alone at the time of disease onset, and most patients with anti-ARS Abs eventually developed ILD if they did not have ILD at disease onset. Patients with anti-ARS Abs are relatively homogeneous. However, the distribution and timing of myositis, ILD, and rashes differ among patients with individual anti-ARS Abs. Thus, identification of individual anti-ARS Abs is beneficial to define this rather homogeneous subset and to predict clinical outcomes within the \"anti-synthetase syndrome.\"
Targeting necroptosis in muscle fibers ameliorates inflammatory myopathies
Muscle cell death in polymyositis is induced by CD8 + cytotoxic T lymphocytes. We hypothesized that the injured muscle fibers release pro-inflammatory molecules, which would further accelerate CD8 + cytotoxic T lymphocytes-induced muscle injury, and inhibition of the cell death of muscle fibers could be a novel therapeutic strategy to suppress both muscle injury and inflammation in polymyositis. Here, we show that the pattern of cell death of muscle fibers in polymyositis is FAS ligand-dependent necroptosis, while that of satellite cells and myoblasts is perforin 1/granzyme B-dependent apoptosis, using human muscle biopsy specimens of polymyositis patients and models of polymyositis in vitro and in vivo. Inhibition of necroptosis suppresses not only CD8 + cytotoxic T lymphocytes-induced cell death of myotubes but also the release of inflammatory molecules including HMGB1. Treatment with a necroptosis inhibitor or anti-HMGB1 antibodies ameliorates myositis-induced muscle weakness as well as muscle cell death and inflammation in the muscles. Thus, targeting necroptosis in muscle cells is a promising strategy for treating polymyositis providing an alternative to current therapies directed at leukocytes. Polymyositis (PM) is a chronic inflammatory myopathy characterized by progressive muscle weakness. Here the authors showed that muscle fibers in PM undergo necroptosis and aggravate inflammation via releasing pro-inflammatory molecules such as HMGB1.
Myasthenic crisis and polymyositis induced by one dose of nivolumab
An 80‐year‐old man, who developed multiple lymph node and skin metastasis of malignant melanoma, received nivolumab monotherapy. Two weeks after the first dose, he experienced anorexia and fatigue, and suffered from progressive, severe dyspnea and muscle weakness. We diagnosed him with myocarditis, myositis, and myasthenic crisis induced by nivolumab. We commenced steroid therapy, immune absorption therapy, plasma exchange therapy, and i.v. immunoglobulin therapy, and succeeded in saving his life. Because his serum level of anti‐acetylcholine receptor antibodies in a sample collected before nivolumab treatment were positive and were elevated significantly after nivolumab, we suspected that nivolumab triggered a severe autoimmune response, which progressed subclinical myasthenia gravis to myasthenic crisis. We carried out T cell receptor repertoire analysis using next‐generation sequencing technologies and identified infiltration of clonally expanded T cell populations in the skeletal muscle after nivolumab treatment, implying a very strong T cell immune response against muscular cells. To avoid severe immune‐related adverse events, the exclusion of patients with subclinical autoimmune disease is very important for treatment with immune checkpoint inhibitors. Myasthenic crisis and polymyositis were induced by one dose of nivolumab. We performed T cell receptor repertoire analysis using the next‐generation sequencing technologies and identified infiltration of clonally expanded T cell populations in the skeletal muscle tissue after the nivolumab treatment, implying the very strong T cell immune response against muscular cells
Clinical Utility of an Enzyme-Linked Immunosorbent Assay for Detecting Anti-Melanoma Differentiation-Associated Gene 5 Autoantibodies
Autoantibodies to melanoma differentiation-associated gene 5 (MDA5) are specifically expressed in patients with dermatomyositis (DM) and are associated with a subset of DM patients with rapidly progressive interstitial lung disease (RP-ILD). Here, we examined the clinical utility of a newly developed enzyme-linked immunosorbent assay (ELISA) system for detecting these antibodies. Here we developed an improved ELISA for detecting anti-MDA5 antibodies. We then performed a multicenter clinical study involving 8 medical centers and enrolled 242 adult patients with polymyositis (PM)/DM, 190 with non-PM/DM connective tissue disease (CTD), 154 with idiopathic interstitial pneumonia (IIP), and 123 healthy controls. Anti-MDA5 antibodies in the patients' serum samples were quantified using our newly developed ELISA, and the results were compared to those obtained using the gold-standard immunoprecipitation (IP) assay. In addition, correlations between the ELISA-quantified anti-MDA5 antibodies and clinical characteristics were evaluated. In patients with PM/DM, the anti-MDA5 antibody measurements obtained from the ELISA and IP assay were highly concordant; the ELISA exhibited an analytical sensitivity of 98.2%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 99.5% (compared to the IP assay). Anti-MDA5 antibodies were detected in 22.7% of the DM patients, but not in any of the patients with PM, non-PM/DM CTD, or IIP. Clinically amyopathic DM, RP-ILD, arthritis, and fever were more prevalent in DM patients who were anti-MDA5 antibody-positive than in those who were antibody-negative (P ≤ 0.0002 for all comparisons). In addition, anti-MDA5 antibody-positive patients with RP-ILD exhibited higher antibody levels than those without RP-ILD (P = 0.006). Our newly developed ELISA can detect anti-MDA5 antibodies as efficiently as the gold standard IP assay and has the potential to facilitate the routine clinical measurement of anti-MDA5 antibodies in patients who suspected to have DM.
Disease specificity of autoantibodies to cytosolic 5′-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases
ObjectivesThe diagnosis of inclusion body myositis (IBM) can be challenging as it can be difficult to clinically distinguish from other forms of myositis, particularly polymyositis (PM). Recent studies have shown frequent presence of autoantibodies directed against cytosolic 5′-nucleotidase 1A (cN-1A) in patients with IBM. We therefore, examined the autoantigenicity and disease specificity of major epitopes of cN-1A in patients with sporadic IBM compared with healthy and disease controls.MethodsSerum samples obtained from patients with IBM (n=238), PM and dermatomyositis (DM) (n=185), other autoimmune diseases (n=246), other neuromuscular diseases (n=93) and healthy controls (n=35) were analysed for the presence of autoantibodies using immunodominant cN-1A peptide ELISAs.ResultsAutoantibodies directed against major epitopes of cN-1A were frequent in patients with IBM (37%) but not in PM, DM or non-autoimmune neuromuscular diseases (<5%). Anti-cN-1A reactivity was also observed in some other autoimmune diseases, particularly Sjögren's syndrome (SjS; 36%) and systemic lupus erythematosus (SLE; 20%).ConclusionsIn summary, we found frequent anti-cN-1A autoantibodies in sera from patients with IBM. Heterogeneity in reactivity with the three immunodominant epitopes indicates that serological assays should not be limited to a distinct epitope region. The similar reactivities observed for SjS and SLE demonstrate the need to further investigate whether distinct IBM-specific epitopes exist.
Prevalence of human T-cell leukemia virus type 1 associated inflammatory myopathies (HAIM) in Salvador, Brazil
Human T-cell leukemia virus type 1 (HTLV-1) causes inflammatory diseases and is associated with various muscle abnormalities, including polymyositis. Elevated serum creatine kinase (CPK) levels are typically indicative of muscle damage. This study aimed to determine the prevalence of HTLV-1 associated inflammatory myopathies (HAIM) in a large cohort of People living with HTLV-1 from Salvador, Brazil. Additionally, we sought to describe the clinical, laboratory, and histopathological findings of seven HTLV-1-infected patients with persistent hyperCKemia. This study included 503 HTLV-1-infected patients from a cohort in Salvador, Brazil, who were analyzed for creatine phosphokinase (CPK) levels. Clinical, laboratory, and pathologic examinations were performed in patients whose CPK levels were above the upper limit of the normal range in the two tests performed at different time points. Polymyositis was the main cause of HAIM in the study population, with a prevalence rate of 0.6%. Two cases were diagnosed with muscular dystrophy and mitochondrial disease, and in two other patients the cause of hyperCKemia could not be determined and is currently under investigation. Polymyositis was the main cause of HAIM in this cfohort of People living with HTLV-1.
Clinical significance of soluble CD163 in polymyositis-related or dermatomyositis-related interstitial lung disease
Background Macrophage activation is involved in the pathogenesis of polymyositis (PM)/dermatomyositis (DM). CD163, a scavenger receptor expressed on the surface of activated macrophages, mediates anti-inflammatory functions. This study aimed to evaluate the clinical significance of soluble CD163 (sCD163) in PM/DM-related interstitial lung disease (ILD). Methods The main subjects were 48 patients with PM/DM-related ILD. As controls, 10 patients with PM/DM without ILD and 20 healthy volunteers were enrolled. In patients with PM/DM-related ILD, the baseline characteristics and clinical course were obtained through a review of patient medical records. Serum sCD163 levels at ILD diagnosis were quantified by enzyme-linked immunosorbent assay, which were compared with the other baseline clinical factors and evaluated for potential as a prognostic biomarker. In addition, immunohistochemistry analysis using anti-human CD163 antibody was performed on the lung sections of two patients with DM-related ILD (a survivor and non-survivor, respectively) and one patient with early-stage lung cancer as a normal control. Results The median value of serum sCD163 in patients with PM/DM-related ILD was 818 ng/mL, which was higher than that of PM/DM patients without ILD and healthy volunteers (716 ng/mL and 340 ng/mL, respectively). Significant but mild correlations with serum sCD163 levels were observed for serum C-reactive protein levels ( r  = 0.322) and % predicted forced vital capacity ( r  = −0.301) in patients with PM/DM-related ILD. A Cox proportional hazard model demonstrated that patients with PM/DM-related ILD and higher sCD163 levels had worse prognosis (age-adjusted and gender-adjusted hazard ratio per 100 ng/mL increase 1.27, 95% confidence interval 1.11–1.45, P <0.001). In immunohistochemistry analysis, compared with normal lung, alveolar infiltration of CD163-positive macrophages was evident in the lungs of patients with DM-related ILD. Especially, the finding was more severe in the non-survivor’s lung. Conclusions Serum sCD163 might be a potential biomarker for predicting the severity and prognosis of PM/DM-related ILD. Our results suggest the importance of macrophage activation in the disease.
Anti-NT5C1A autoantibodies are associated with more severe disease in patients with juvenile myositis
ObjectivesAutoantibodies recognising cytosolic 5′-nucleotidase 1A (NT5C1A) are found in adult patients with myositis and other autoimmune diseases. They are especially prevalent in adults with inclusion body myositis (IBM), in which they are associated with more severe weakness and higher mortality. This study was undertaken to define the prevalence and clinical features associated with anti-NT5C1A autoantibodies in juvenile myositis.MethodsWe screened sera from 380 patients with juvenile myositis, 30 patients with juvenile idiopathic arthritis (JIA) and 92 healthy control children for anti-NT5C1A autoantibodies. Clinical characteristics were compared between patients with myositis with and without anti-NT5C1A autoantibodies.ResultsAnti-NT5C1A autoantibodies were present in 102 of 380 (27%) patients with juvenile myositis and in 11 of 92 (12%) healthy control children (P=0.002) and 27% of children with JIA (P=0.05 vs controls). Sera of 83 of 307 (27%) patients with juvenile dermatomyositis and 16 of 46 (35%) patients with juvenile overlap myositis were anti-NT5C1A autoantibody-positive (P<0.01 vs healthy controls for each), but sera of only 3 of 27 (11%) patients with juvenile polymyositis were anti-NT5C1A-positive. Patients with juvenile myositis with and without anti-NT5C1A autoantibodies had similar clinical phenotypes. However, patients with anti-NT5C1A autoantibody-positive myositis had greater pulmonary symptoms at diagnosis (P=0.005), more frequent hospitalisations (P=0.01) and required a larger number of medications (P<0.001).ConclusionAnti-NT5C1A autoantibodies are present in more than one-quarter of children with juvenile myositis and JIA compared with only 12% of healthy children, suggesting they are myositis-associated in children. As in adults with IBM, patients with juvenile myositis with anti-NT5C1A autoantibodies have more severe disease.
Pathology Features of Immune and Inflammatory Myopathies, Including a Polymyositis Pattern, Relate Strongly to Serum Autoantibodies
Abstract We asked whether myopathology features of immune or inflammatory myopathies (IIM), without reference to clinical or laboratory attributes, correlate with serum autoantibodies. Retrospective study included 148 muscle biopsies with: B-cell inflammatory foci (BIM), myovasculopathy, perimysial pathology (IMPP), myofiber necrosis without perimysial or vessel damage or inflammation (MNec), inflammation and myofiber vacuoles or mitochondrial pathology (IM-VAMP), granulomas, chronic graft-versus-host disease, or none of these criteria. 18 IIM-related serum autoantibodies were tested. Strong associations between myopathology and autoantibodies included: BIM with PM/Scl-100 (63%; odds ratio [OR] = 72); myovasculopathies with TIF1-γ or NXP2 (70%; OR = 72); IMPP with Jo-1 (33%; OR = 28); MNec with SRP54 (23%; OR = 37); IM-VAMP with NT5C1a (95%; OR = 83). Hydroxymethylglutaryl-CoA reductase (HMGCR) antibodies related to presence of myofiber necrosis across all groups (82%; OR = 9), but not to one IIM pathology group. Our results validate characterizations of IIM by myopathology features, showing strong associations with some serum autoantibodies, another objective IIM-related marker. BIM with PM/Scl-100 antibodies can be described pathologically as polymyositis. Tif1-γ and NXP2 antibodies are both common in myovasculopathies. HMGCR antibodies associate with myofiber necrosis, but not one IIM pathology subtype. Relative association strengths of IIM-related autoantibodies to IIM myopathology features versus clinical characteristics require further study.
A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-α monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients
Objective To assess the pharmacodynamic effects of sifalimumab, an investigational anti-IFN-α monoclonal antibody, in the blood and muscle of adult dermatomyositis and polymyositis patients by measuring neutralisation of a type I IFN gene signature (IFNGS) following drug exposure. Methods A phase 1b randomised, double-blinded, placebo controlled, dose-escalation, multicentre clinical trial was conducted to evaluate sifalimumab in dermatomyositis or polymyositis patients. Blood and muscle biopsies were procured before and after sifalimumab administration. Selected proteins were measured in patient serum with a multiplex assay, in the muscle using immunohistochemistry, and transcripts were profiled with microarray and quantitative reverse transcriptase PCR assays. A 13-gene IFNGS was used to measure the pharmacological effect of sifalimumab. Results The IFNGS was suppressed by a median of 53–66% across three time points (days 28, 56 and 98) in blood (p=0.019) and 47% at day 98 in muscle specimens post-sifalimumab administration. Both IFN-inducible transcripts and proteins were prevalently suppressed following sifalimumab administration. Patients with 15% or greater improvement from baseline manual muscle testing scores showed greater neutralisation of the IFNGS than patients with less than 15% improvement in both blood and muscle. Pathway/functional analysis of transcripts suppressed by sifalimumab showed that leucocyte infiltration, antigen presentation and immunoglobulin categories were most suppressed by sifalimumab and highly correlated with IFNGS neutralisation in muscle. Conclusions Sifalimumab suppressed the IFNGS in blood and muscle tissue in myositis patients, consistent with this molecule's mechanism of action with a positive correlative trend between target neutralisation and clinical improvement. These observations will require confirmation in a larger trial powered to evaluate efficacy.