Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
9,285 result(s) for "Polyneuropathy"
Sort by:
Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis
Hereditary transthyretin amyloidosis is caused by the deposition of misfolded transthyretin proteins in peripheral nerves and other tissues. This phase 3 trial tested patisiran, a small interfering RNA targeting transthyretin messenger RNA, to treat the disease.
Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis
This phase 3 trial tested inotersen, a modified oligonucleotide that targets TTR messenger RNA, in the treatment of hereditary transthyretin amyloidosis, a disease in which misfolded transthyretin proteins are deposited in peripheral nerves and other tissues.
Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study
Hereditary transthyretin-mediated amyloidosis is a rare, inherited, progressive disease caused by mutations in the transthyretin (TTR) gene. We assessed the safety and efficacy of long-term treatment with patisiran, an RNA interference therapeutic that inhibits TTR production, in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. This multicentre, open-label extension (OLE) trial enrolled patients at 43 hospitals or clinical centres in 19 countries as of Sept 24, 2018. Patients were eligible if they had completed the phase 3 APOLLO or phase 2 OLE parent studies and tolerated the study drug. Eligible patients from APOLLO (patisiran and placebo groups) and the phase 2 OLE (patisiran group) studies enrolled in this global OLE trial and received patisiran 0·3 mg/kg by intravenous infusion every 3 weeks with plans to continue to do so for up to 5 years. Efficacy assessments included measures of polyneuropathy (modified Neuropathy Impairment Score +7 [mNIS+7]), quality of life, autonomic symptoms, nutritional status, disability, ambulation status, motor function, and cardiac stress, with analysis by study groups (APOLLO-placebo, APOLLO-patisiran, phase 2 OLE patisiran) based on allocation in the parent trial. The global OLE is ongoing with no new enrolment, and current findings are based on the interim analysis of the patients who had completed 12-month efficacy assessments as of the data cutoff. Safety analyses included all patients who received one or more dose of patisiran up to the data cutoff. This study is registered with ClinicalTrials.gov, NCT02510261. Between July 13, 2015, and Aug 21, 2017, of 212 eligible patients, 211 were enrolled: 137 patients from the APOLLO-patisiran group, 49 from the APOLLO-placebo group, and 25 from the phase 2 OLE patisiran group. At the data cutoff on Sept 24, 2018, 126 (92%) of 137 patients from the APOLLO-patisiran group, 38 (78%) of 49 from the APOLLO-placebo group, and 25 (100%) of 25 from the phase 2 OLE patisiran group had completed 12-month assessments. At 12 months, improvements in mNIS+7 with patisiran were sustained from parent study baseline with treatment in the global OLE (APOLLO-patisiran mean change –4·0, 95 % CI –7·7 to −0·3; phase 2 OLE patisiran –4·7, –11·9 to 2·4). Mean mNIS+7 score improved from global OLE enrolment in the APOLLO-placebo group (mean change from global OLE enrolment −1·4, 95% CI –6·2 to 3·5). Overall, 204 (97%) of 211 patients reported adverse events, 82 (39%) reported serious adverse events, and there were 23 (11%) deaths. Serious adverse events were more frequent in the APOLLO-placebo group (28 [57%] of 49) than in the APOLLO-patisiran (48 [35%] of 137) or phase 2 OLE patisiran (six [24%] of 25) groups. The most common treatment-related adverse event was mild or moderate infusion-related reactions. The frequency of deaths in the global OLE was higher in the APOLLO-placebo group (13 [27%] of 49), who had a higher disease burden than the APOLLO-patisiran (ten [7%] of 137) and phase 2 OLE patisiran (0 of 25) groups. In this interim 12-month analysis of the ongoing global OLE study, patisiran appeared to maintain efficacy with an acceptable safety profile in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Continued long-term follow-up will be important for the overall assessment of safety and efficacy with patisiran. Alnylam Pharmaceuticals.
Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial
Diabetic Sensorimotor Polyneuropathy (DSPN) is a common complication of diabetes mellitus. Curcumin is the most important ingredient found in turmeric which has a very high potential for eliminating free radicals and inhibiting oxidative stress as an antioxidant agent. The aim of this study was to determine the effect of Nano-curcumin supplementation on the severity of sensorimotor polyneuropathy in patients with Type 2 diabetes mellitus (T2DM). This parallel, double-blind randomized, placebo-controlled clinical trial was conducted on 80 diabetic patients. Participants were allocated randomly to the intervention (n = 40) and the control group (n = 40). They received 80 mg of nano-curcumin or placebo capsules for 8 weeks. Anthropometric measurements, dietary intake, physical activity, glycemic indices and the severity of DSPN were measured before and after the intervention. Supplementation of nano curcumin was accounted for a significant reduction in Glycated hemoglobin(HbA1c) (p < 0.001) and Fast Blood Sugar(FBS) (p = 0.004), total score of neuropathy (p < 0.001), total reflex score (p = 0.04) and temperature (p = 0.01) compared to placebo group. Our findings indicated that curcumin supplementation for 2 months improved and reduced the severity of DSPN in patients with T2DM.
The epidemiology and risk factors of chronic polyneuropathy
Polyneuropathy is a disabling condition of the peripheral nerves, characterized by symmetrical distal numbness and paresthesia, often accompanied with pain and weakness. Although the disease is often encountered in neurological clinics and is well known by physicians, incidence and prevalence rates are not well known. We searched EMBASE, Medline, Web-of-science, Cochrane, PubMed Publisher, and Google Scholar, for populationbased studies investigating the prevalence of polyneuropathy and its risk factors. Out of 5119 papers, we identified 29 eligible studies, consisting of 11 door-to-door survey studies, 7 case-control studies and 11 cohort/database studies. Prevalence of polyneuropathy across these studies varies substantially. This can partly be explained by differences in assessment protocols and study populations. The overall prevalence of polyneuropathy in the general population seems around 1 % and rises to up to 7 % in the elderly. Polyneuropathy seemed more common in Western countries than in developing countries and there are indications that females are more often affected than males. Risk factor profiles differ across countries. In developing countries communicable diseases, like leprosy, are more common causes of neuropathy, whereas in Western countries especially diabetes, alcohol overconsumption, cytostatic drugs and cardiovascular disease are more commonly associated with polyneuropathy. In all studies a substantial proportion of polyneuropathy cases (20-30 %) remains idiopathic. Most of these studies have been performed over 15 years ago. More recent evidence suggests that the prevalence of polyneuropathy in the general population has increased over the years. Future research is necessary to confirm this increase in prevalence and to identify new and potentially modifiable risk factors.
Serum neurofilament light chain: a novel biomarker for early diabetic sensorimotor polyneuropathy
Aims/hypothesis No established blood-based biomarker exists to monitor diabetic sensorimotor polyneuropathy (DSPN) and evaluate treatment response. The neurofilament light chain (NFL), a blood biomarker of neuroaxonal damage in several neurodegenerative diseases, represents a potential biomarker for DSPN. We hypothesised that higher serum NFL levels are associated with prevalent DSPN and nerve dysfunction in individuals recently diagnosed with diabetes. Methods This cross-sectional study included 423 adults with type 1 and type 2 diabetes and known diabetes duration of less than 1 year from the prospective observational German Diabetes Study cohort. NFL was measured in serum samples of fasting participants in a multiplex approach using proximity extension assay technology. DSPN was assessed by neurological examination, nerve conduction studies and quantitative sensory testing. Associations of serum NFL with DSPN (defined according to the Toronto Consensus criteria) were estimated using Poisson regression, while multivariable linear and quantile regression models were used to assess associations with nerve function measures. In exploratory analyses, other biomarkers in the multiplex panel were also analysed similarly to NFL. Results DSPN was found in 16% of the study sample. Serum NFL levels increased with age. After adjustment for age, sex, waist circumference, height, HbA 1c , known diabetes duration, diabetes type, cholesterol, eGFR, hypertension, CVD, use of lipid-lowering drugs and use of non-steroidal anti-inflammatory drugs, higher serum NFL levels were associated with DSPN (RR [95% CI] per 1-normalised protein expression increase, 1.92 [1.50, 2.45], p <0.0001), slower motor (all p <0.0001) and sensory (all p ≤0.03) nerve conduction velocities, lower sural sensory nerve action potential ( p =0.0004) and higher thermal detection threshold to warm stimuli ( p =0.023 and p =0.004 for hand and foot, respectively). There was no evidence for associations between other neurological biomarkers and DSPN or nerve function measures. Conclusions/interpretation Our findings in individuals recently diagnosed with diabetes provide new evidence associating higher serum NFL levels with DSPN and peripheral nerve dysfunction. The present study advocates NFL as a potential biomarker for DSPN. Graphical abstract
Expert consensus recommendations to improve diagnosis of ATTR amyloidosis with polyneuropathy
Amyloid transthyretin (ATTR) amyloidosis with polyneuropathy (PN) is a progressive, debilitating, systemic disease wherein transthyretin protein misfolds to form amyloid, which is deposited in the endoneurium. ATTR amyloidosis with PN is the most serious hereditary polyneuropathy of adult onset. It arises from a hereditary mutation in the TTR gene and may involve the heart as well as other organs. It is critical to identify and diagnose the disease earlier because treatments are available to help slow the progression of neuropathy. Early diagnosis is complicated, however, because presentation may vary and family history is not always known. Symptoms may be mistakenly attributed to other diseases such as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), idiopathic axonal polyneuropathy, lumbar spinal stenosis, and, more rarely, diabetic neuropathy and AL amyloidosis. In endemic countries (e.g., Portugal, Japan, Sweden, Brazil), ATTR amyloidosis with PN should be suspected in any patient who has length-dependent small-fiber PN with autonomic dysfunction and a family history of ATTR amyloidosis, unexplained weight loss, heart rhythm disorders, vitreous opacities, or renal abnormalities. In nonendemic countries, the disease may present as idiopathic rapidly progressive sensory motor axonal neuropathy or atypical CIDP with any of the above symptoms or with bilateral carpal tunnel syndrome, gait disorders, or cardiac hypertrophy. Diagnosis should include DNA testing, biopsy, and amyloid typing. Patients should be followed up every 6–12 months, depending on the severity of the disease and response to therapy. This review outlines detailed recommendations to improve the diagnosis of ATTR amyloidosis with PN.
Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis
Critical illness polyneuropathy (CIP) and myopathy (CIM) are complications of critical illness that present with muscle weakness and failure to wean from the ventilator. In addition to prolonging mechanical ventilation and hospitalisation, CIP and CIM increase hospital mortality in patients who are critically ill and cause chronic disability in survivors of critical illness. Structural changes associated with CIP and CIM include axonal nerve degeneration, muscle myosin loss, and muscle necrosis. Functional changes can cause electrical inexcitability of nerves and muscles with reversible muscle weakness. Microvascular changes and cytopathic hypoxia might disrupt energy supply and use. An acquired sodium channelopathy causing reduced muscle membrane and nerve excitability is a possible unifying mechanism underlying CIP and CIM. The diagnosis of CIP, CIM, or combined CIP and CIM relies on clinical, electrophysiological, and muscle biopsy investigations. Control of hyperglycaemia might reduce the severity of these complications of critical illness, and early rehabilitation in the intensive care unit might improve the functional recovery and independence of patients.
Analysis of autonomic outcomes in APOLLO, a phase III trial of the RNAi therapeutic patisiran in patients with hereditary transthyretin-mediated amyloidosis
Hereditary transthyretin-mediated (hATTR) amyloidosis is a progressive, debilitating disease often resulting in early-onset, life-impacting autonomic dysfunction. The effect of the RNAi therapeutic, patisiran, on autonomic neuropathy manifestations in patients with hATTR amyloidosis with polyneuropathy in the phase III APOLLO study is reported. Patients received patisiran 0.3 mg/kg intravenously ( n  = 148) or placebo ( n  = 77) once every 3 weeks for 18 months. Patisiran halted or reversed polyneuropathy and improved quality of life from baseline in the majority of patients. At baseline, patients in APOLLO had notable autonomic impairment, as demonstrated by the Composite Autonomic Symptom Score-31 (COMPASS-31) questionnaire and Norfolk Quality of Life-Diabetic Neuropathy (Norfolk QOL-DN) questionnaire autonomic neuropathy domain. At 18 months, patisiran improved autonomic neuropathy symptoms compared with placebo [COMPASS-31, least squares (LS) mean difference, − 7.5; 95% CI: − 11.9, − 3.2; Norfolk QOL-DN autonomic neuropathy domain, LS mean difference, − 1.1; − 1.8, − 0.5], nutritional status (modified body mass index, LS mean difference, 115.7; − 82.4, 149.0), and vasomotor function (postural blood pressure, LS mean difference, − 0.3; − 0.5, − 0.1). Patisiran treatment also led to improvement from baseline at 18 months for COMPASS-31 (LS mean change from baseline, − 5.3; 95% CI: − 7.9, − 2.7) and individual domains, orthostatic intolerance (− 4.6; − 6.3, − 2.9) and gastrointestinal symptoms (− 0.8; − 1.5, − 0.2). Rapid worsening of all study measures was observed with placebo, while patisiran treatment resulted in stable or improved scores compared with baseline. Patisiran demonstrates benefit across a range of burdensome autonomic neuropathy manifestations that deteriorate rapidly without early and continued treatment.
Switching from inotersen to eplontersen in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: analysis from NEURO-TTRansform
Background The phase 3 NEURO-TTRansform trial showed eplontersen treatment for 65 weeks reduced transthyretin (TTR), halted progression of neuropathy impairment, and improved quality of life (QoL) in adult patients with hereditary TTR-mediated amyloidosis with polyneuropathy (ATTRv-PN), vs. historical placebo. Methods NEURO-TTRansform enrolled patients with ATTRv-PN. A subset of patients were randomized to receive subcutaneous inotersen 300 mg weekly (Weeks 1–34) and subsequently switched to subcutaneous eplontersen 45 mg every 4 weeks (Weeks 37–81). Change in serum TTR and treatment-emergent adverse events (TEAEs) were evaluated through Week 85. Effects on neuropathy impairment, QoL, and nutritional status were also evaluated. Results Of 24 patients randomized to inotersen, 20 (83%) switched to eplontersen at Week 37 and four discontinued due to AEs/investigator decision. Absolute change in serum TTR was greater after switching from inotersen (−74.3%; Week 35) to eplontersen (−80.6%; Week 85). From the end of inotersen treatment, neuropathy impairment and QoL were stable (i.e., did not progress) while on eplontersen, and there was no deterioration in nutritional status. TEAEs were fewer with eplontersen (Weeks 37–85; 19/20 [95%] patients) compared with inotersen (up to Week 35; 24/24 [100%] patients). Mean platelet counts decreased during inotersen treatment (mean nadir reduction ‒40.7%) and returned to baseline during eplontersen treatment (mean nadir reduction, ‒3.2%). Conclusions Switching from inotersen to eplontersen further reduced serum TTR, halted disease progression, stabilized QoL, restored platelet count, and improved tolerability, without deterioration in nutritional status. This supports a positive benefit-risk profile for patients with ATTRv-PN who switch from inotersen to eplontersen.