Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
136 result(s) for "Polyradiculoneuropathy, Chronic Inflammatory Demyelinating - immunology"
Sort by:
Chronic inflammatory demyelinating polyneuropathy: update on diagnosis, immunopathogenesis and treatment
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated neuropathy typically characterised by symmetrical involvement, and proximal as well as distal muscle weakness (typical CIDP). However, there are several ‘atypical’ subtypes, such as multifocal acquired demyelinating sensory and motor neuropathy (Lewis-Sumner syndrome) and ‘distal acquired demyelinating symmetric neuropathy’, possibly having different immunopathogenesis and treatment responses. In the absence of diagnostic and pathogenetic biomarkers, diagnosis and treatment may be difficult, but recent progress has been made in the application of neuroimaging tools demonstrating nerve hypertrophy and in identifying subgroups of patients who harbour antibodies against nodal proteins such as neurofascin and contactin-1. Despite its relative rarity, CIDP represents a significant economic burden, mostly due to costly treatment with immunoglobulin. Recent studies have demonstrated the efficacy of subcutaneous as well as intravenous immunoglobulin as maintenance therapy, and newer immunomodulating drugs can be used in refractory cases. This review provides an overview focusing on advances over the past several years.
Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory neuropathy, classically characterised by a slowly progressive onset and symmetrical, sensorimotor involvement. However, there are many phenotypic variants, suggesting that CIDP may not be a discrete disease entity but rather a spectrum of related conditions. While the abiding theory of CIDP pathogenesis is that cell-mediated and humoral mechanisms act together in an aberrant immune response to cause damage to peripheral nerves, the relative contributions of T cell and autoantibody responses remain largely undefined. In animal models of spontaneous inflammatory neuropathy, T cell responses to defined myelin antigens are responsible. In other human inflammatory neuropathies, there is evidence of antibody responses to Schwann cell, compact myelin or nodal antigens. In this review, the roles of the cellular and humoral immune systems in the pathogenesis of CIDP will be discussed. In time, it is anticipated that delineation of clinical phenotypes and the underlying disease mechanisms might help guide diagnostic and individualised treatment strategies for CIDP.
Neuropathy with anti-myelin-associated glycoprotein antibodies: update on diagnosis, pathophysiology and management
Antimyelin-associated glycoprotein (MAG) neuropathy is a rare autoimmune demyelinating peripheral neuropathy caused by IgM autoantibodies targeting MAG. The typical presentation is that of a slowly progressive, distal, length-dependent, predominantly sensory, sometimes ataxic neuropathy, frequently accompanied by upper limb tremor. Distal motor weakness may subsequently occur. The clinical presentation may vary and rarely be consistent with that of typical chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), as well as have an aggressive and rapidly disabling course. The diagnosis of anti-MAG neuropathy is based on the detection of anti-MAG antibodies through ELISA or western blot analysis, primarily in presence of an IgM monoclonal gammopathy. Anti-MAG neuropathy may occur without or with haematological malignancy. Electrophysiology is characteristic of a predominantly distal demyelinating neuropathy. Intravenous immunoglobulins and plasma exchange have unproven benefits, but may provide short-term effects. Cytotoxic therapies are commonly used, although without an evidence base. Rituximab, an anti-B-cell monoclonal antibody was studied in two randomised controlled trials, neither of which achieved their primary outcome. However, a meta-analysis of these two studies demonstrated improvement of disability at 8–12 months. A recent trial with lenalidomide was interrupted prematurely due to a high rate of venous thromboembolism. There are currently two ongoing trials with Bruton’s tyrosine kinase inhibitors. Symptom control is otherwise frequently needed. Outcome measures used for other inflammatory neuropathies present limitations in anti-MAG neuropathy. International registries such as the planned IMAGiNe study may, in future, provide answers to the many remaining questions.
Paranodal dissection in chronic inflammatory demyelinating polyneuropathy with anti-neurofascin-155 and anti-contactin-1 antibodies
ObjectiveTo investigate the morphological features of chronic inflammatory demyelinating polyneuropathy (CIDP) with autoantibodies directed against paranodal junctional molecules, particularly focusing on the fine structures of the paranodes.MethodsWe assessed sural nerve biopsy specimens obtained from 9 patients with CIDP with anti-neurofascin-155 antibodies and 1 patient with anti-contactin-1 antibodies. 13 patients with CIDP without these antibodies were also examined to compare pathological findings.ResultsCharacteristic light and electron microscopy findings in transverse sections from patients with anti-neurofascin-155 and anti-contactin-1 antibodies indicated a slight reduction in myelinated fibre density, with scattered myelin ovoids, and the absence of macrophage-mediated demyelination or onion bulbs. Teased-fibre preparations revealed that segmental demyelination tended to be found in patients with relatively higher frequencies of axonal degeneration and was tandemly found at consecutive nodes of Ranvier in a single fibre. Assessment of longitudinal sections by electron microscopy revealed that detachment of terminal myelin loops from the axolemma was frequently found at the paranode in patients with anti-neurofascin-155 and anti-contactin-1 antibody-positive CIDP compared with patients with antibody-negative CIDP. Patients with anti-neurofascin-155 antibodies showed a positive correlation between the frequencies of axo–glial detachment at the paranode and axonal degeneration, as assessed by teased-fibre preparations (p<0.05).ConclusionsParanodal dissection without classical macrophage-mediated demyelination is the characteristic feature of patients with CIDP with autoantibodies to paranodal axo–glial junctional molecules.
Autoantibodies in chronic inflammatory neuropathies: diagnostic and therapeutic implications
Key Points Discovery of the antigenic targets associated with nerve-specific autoimmune diseases is a crucial step in understanding their pathogenesis The identification of highly disease-specific autoantibodies in patients with inflammatory neuropathies has considerable clinical utility, even when the proportion of antibody-positive patients is low IgG4 antibodies against contactin-1 and neurofascin splice variant 155 characterize a subtype of chronic inflammatory demyelinating polyradiculoneuropathy with distinct clinical features, including poor response to intravenous immunoglobulin Autoantibodies linked to multifocal motor neuropathy, polyneuropathy associated with monoclonal gammopathy of unknown significance and paraneoplastic peripheral nerve disorders provide important clinical information and their presence should be investigated in all patients with inflammatory neuropathies The discovery that IgG4 autoantibodies against node of Ranvier proteins are linked to distinct subsets of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) represents a key advance in our understanding of the chronic inflammatory neuropathies (CINs). Here, Querol and colleagues discuss the clinical implications of these autoantibodies in patients with CIDP and other immune-mediated neuropathies. The chronic inflammatory neuropathies (CINs) are rare, very disabling autoimmune disorders that generally respond well to immune therapies such as intravenous immunoglobulin (IVIg). The most common forms of CIN are chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), multifocal motor neuropathy, and polyneuropathy associated with monoclonal gammopathy of unknown significance. The field of CIN has undergone a major advance with the identification of IgG4 autoantibodies directed against paranodal proteins in patients with CIDP. Although these autoantibodies are only found in a small subset of patients with CIDP, they can be used to guide therapeutic decision-making, as these patients have a poor response to IVIg. These observations provide proof of concept that identifying the target antigens in tissue-specific antibody-mediated autoimmune diseases is important, not only to understand their underlying pathogenic mechanisms, but also to correctly diagnose and treat affected patients. This state-of-the-art Review focuses on the role of autoantibodies against nodes of Ranvier in CIDP, a clinically relevant emerging field of research. The role of autoantibodies in other immune-mediated neuropathies, including other forms of CIN, primary autoimmune neuropathies, neoplasms, and systemic diseases that resemble CIN, are also discussed.
Autoantibodies Against the Node of Ranvier in Seropositive Chronic Inflammatory Demyelinating Polyneuropathy: Diagnostic, Pathogenic, and Therapeutic Relevance
Discovery of disease-associated autoantibodies has transformed the clinical management of a variety of neurological disorders. Detection of autoantibodies aids diagnosis and allows patient stratification resulting in treatment optimization. In the last years, a set of autoantibodies against proteins located at the node of Ranvier has been identified in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). These antibodies target neurofascin, contactin1, or contactin-associated protein 1, and we propose to name CIDP patients with these antibodies collectively as seropositive. They have unique clinical characteristics that differ from seronegative CIDP. Moreover, there is compelling evidence that autoantibodies are relevant for the pathogenesis. In this article, we review the current knowledge on the characteristics of autoantibodies against the node of Ranvier proteins and their clinical relevance in CIDP. We start with a description of the structure of the node of Ranvier followed by a summary of assays used to identify seropositive patients; and then, we describe clinical features and characteristics linked to seropositivity. We review knowledge on the role of these autoantibodies for the pathogenesis with relevance for the emerging concept of nodopathy/paranodopathy and summarize the treatment implications.
Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity
IgG molecules exert both pro- and antiinflammatory effector functions based on the composition of the fragment crystallizable (Fc) domain glycan. Sialylated IgG Fc domains have antiinflammatory properties that are attributed to their ability to increase the activation threshold of innate effector cells to immune complexes by stimulating the upregulation of the inhibitory Fcγ receptor IIB (FcγRIIB). Here, we report that IgG Fc sialylation of human monoclonal IgG1 molecules impairs their efficacy to induce complement-mediated cytotoxicity (CDC). Fc sialylation of a CD20-targeting antibody had no impact on antibody-dependent cellular cytotoxicity and did not change the affinity of the antibody for activating Fcγ receptors. In contrast, the presence of sialic acid abrogated the increased binding of C1q to Fc-galactosylated IgG1 and resulted in decreased levels of C3b deposition on the cell surface. Similar to monoclonal antibodies, sialic acid inhibited the increased C1q binding to galactosylated Fc fragments in human polyclonal IgG. In sera derived from patients with chronic inflammatory demyelinating polyneuropathy, an autoimmune disease of the peripheral nervous system in which humoral immune responses mediate tissue damage, induction of IgG Fc sialylation was associated with clinical disease remission. Thus, impairment of CDC represents an FcγR-independent mechanism by which Fc-sialylated glycovariants might limit proinflammatory IgG effector functions.
Advances in the diagnosis, pathogenesis and treatment of CIDP
Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common chronic autoimmune neuropathy. In this Review, Marinos Dalakas provides an update on the diagnosis of this disease, including recently devised consensus criteria. CIDP treatments—primarily corticosteroids, intravenous immunoglobulin and plasmapheresis—and ongoing challenges in trial design are discussed, together with potential therapeutic approaches that are emerging from advances in our understanding of the underlying immunopathology of this disease. Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common chronic autoimmune neuropathy. Despite clinical challenges in diagnosis—owing in part to the existence of disease variants, and different views on how many electrophysiological abnormalities are needed to document demyelination—consensus criteria seem to have been reached for research or clinical practice. Current standard of care involves corticosteroids, intravenous immunoglobulin (IVIg) and/or plasmapheresis, which provide short-term benefits. Maintenance therapy with IVIg can induce sustained remission, increase quality of life and prevent further axonal loss, but caution is needed to avoid overtreatment. Commonly used immunosuppressive drugs offer minimal benefit, necessitating the development of new therapies for treatment-refractory patients. Advances in our understanding of the underlying immunopathology in CIDP have identified new targets for future therapeutic efforts, including T cells, B cells, and transmigration and transduction molecules. New biomarkers and scoring systems represent emerging tools with the potential to predict therapeutic responses and identify patients with active disease for enrollment into clinical trials. This Review highlights the recent advances in diagnosing CIDP, provides an update on the immunopathology including new target antigens, and discusses current treatments, ongoing challenges and future therapeutic directions. Key Points Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common acquired chronic autoimmune neuropathy Despite disease heterogeneity, recently revised diagnostic criteria provide an optimal balance between sensitivity and specificity Molecules within the non-compact myelin and points of Schwann cell–axon interaction, rather than within compact myelin, seem to be the putative target antigens Corticosteroids, intravenous immunoglobulin (IVIg) and plasmapheresis provide short-term benefits; IVIg is used for long-term maintenance Potential new therapeutic approaches involve targeting key factors in the immunopathogenesis of CIDP, including T cells, B cells and complement Progress in clinical trial design is focused on clinically meaningful tools to define therapeutic responses, enrolling only patients with active disease and exploring biomarkers that predict response to therapies
A pathophysiological and mechanistic review of chronic inflammatory demyelinating polyradiculoneuropathy therapy
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated disease of the peripheral nerves characterized by proximal and distal muscle weakness and sensory abnormalities. CIDP has been associated with various pathophysiological mechanisms that are not fully understood and that likely differ across groups of patients. It has been proposed that an interplay of different immunopathological mechanisms including the cellular, humoral and complement pathways play a key role in peripheral nerve damage in CIDP. Currently approved treatments and therapies in research often target different potential pathophysiological mechanisms. The efficacy of these different treatments can shed light on the prominence of particular pathophysiological pathways in subsets of patients with CIDP. For example, the complement pathway plays a key role in promoting macrophage-mediated demyelination, and complement inhibitors are under development as new targets in CIDP treatment, with mixed results. The neonatal Fc receptor (FcRn) has also been targeted as a promising treatment avenue due to its role in immunoglobulin G degradation. Efgartigimod is the first FcRn blocker approved for the treatment of CIDP. This review provides an overview of key proposed mechanisms of action in CIDP pathophysiology in the context of both basic scientific findings and treatment targets in recent clinical studies.
Anti-neurofascin-155 antibody mediated a distinct phenotype of chronic inflammatory demyelinating polyradiculoneuropathy
Background To investigate Ranvier’s autoantibodies prevalence and isotypes in various peripheral neuropathy variants, compare clinical features between seronegative and seropositive patients, and elucidate immune mechanisms underlying antibody generation. Methods Antibodies against anti-neurofascin-155 (NF155), NF186, contactin-1 (CNTN1), CNTN2, contactin-associated protein 1 (CASPR1), and CASPR2 were identified through cell-based assays. Plasma cytokines were analyzed in anti-NF155 antibody-positive chronic inflammatory demyelinating polyneuropathy (NF155 + CIDP) and Ranvier’s antibodies-negative CIDP (Ab − CIDP) patients using a multiplexed fluorescent immunoassay, validated in vitro in a cell culture model. Results In 368 plasma samples, 50 Ranvier’s autoantibodies were found in 45 individuals, primarily in CIDP cases (25 out of 69 patients) and in 10 out of 122 Guillain-Barré syndrome patients. Anti-NF155 and CNTN1-IgG were exclusive to CIDP. Fourteen samples were NF155-IgG, primarily IgG4 subclass, linked to CIDP features including early onset, tremor, sensory disturbance, elevated CSF protein, prolonged motor latency, conduction block, and poor treatment response. NF155-IgG had low sensitivity (20.28%) but high specificity (100%) for CIDP, rising to 88.88% with tremor and prolonged motor latency. Cytokine profiling in NF155 + CIDP revealed distinct immune responses involving helper T cells, toll-like receptor pathways. Some NF155 + CIDP patients had circulating NF155-specific B cells producing NF155-IgG without antigen presence, suggesting therapeutic potential. Conclusion The study emphasizes the high specificity and sensitivity of NF155-IgG for diagnosing CIDP characterized by distinctive features. Further investigation into circulating NF155-specific B cell phenotypes may pave the way for B cell directed therapy.