Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,568 result(s) for "Polysaccharides, Bacterial - genetics"
Sort by:
Fitness Restoration of a Genetically Tractable Enterococcus faecalis V583 Derivative To Study Decoration-Related Phenotypes of the Enterococcal Polysaccharide Antigen
Commensal and generally harmless in healthy individuals, Enterococcus faecalis causes opportunistic infections in immunocompromised patients. Plasmid-cured E. faecalis strain VE14089, derived from sequenced reference strain V583, is widely used for functional studies due to its improved genetic amenability. Although strain VE14089 has no major DNA rearrangements, with the exception of an ϳ20-kb integrated region of pTEF1 plasmid, the strain presented significant growth differences from the V583 reference strain of our collection (renamed VE14002). In the present study, genome sequencing of strain VE14089 identified additional point mutations. Excision of the integrated pTEF1 plasmid region and sequential restoration of wild-type alleles showing nonsilent mutations were performed to obtain the VE18379 reference-derivative strain. Recovery of the growth ability of the restored VE18379 strain at a level similar to that seen with the reference strain points to GreA and Spx as bacterial fitness determinants. Virulence potential in Galleria mello-nella and intestinal colonization in mouse demonstrated host adaptation of the VE18379 strain equivalent to VE14002 host adaptation. We further demonstrated that deletion of the 16.8-kb variable region of the epa locus recapitulates the key role of Epa decoration in host adaptation, providing a genetic system to study the role of specific epa-variable regions in host adaptation independently of other genetic variations. IMPORTANCE E. faecalis strain VE14089 was derived from V583 cured of its plas-mids. Although VE14089 had no major DNA rearrangements, it presented significant growth and host adaptation differences from the reference strain V583 of our collection. To construct a strain with better fitness, we sequenced the genome of VE14089, identified single nucleotide polymorphisms (SNPs), and repaired the genes that could account for these changes. Using this reference-derivative strain, we provide a novel genetic system to understand the role of the variable region of epa in the enterococcal lifestyle.
Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria
The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. This review summarizes new insights into the genetics and function of rhamnose-containing cell wall polysaccharides expressed by lactic acid bacteria, which includes medically important pathogens, and discusses perspectives on possible future therapeutic and biotechnological applications. Graphical Abstract Figure. This review summarizes new insights into the genetics and function of rhamnose-containing cell wall polysaccharides expressed by lactic acid bacteria, which includes medically important pathogens, and discusses perspectives on possible future therapeutic and biotechnological applications.
Antibiotic Modulation of Capsular Exopolysaccharide and Virulence in Acinetobacter baumannii
Acinetobacter baumannii is an opportunistic pathogen of increasing importance due to its propensity for intractable multidrug-resistant infections in hospitals. All clinical isolates examined contain a conserved gene cluster, the K locus, which determines the production of complex polysaccharides, including an exopolysaccharide capsule known to protect against killing by host serum and to increase virulence in animal models of infection. Whether the polysaccharides determined by the K locus contribute to intrinsic defenses against antibiotics is unknown. We demonstrate here that mutants deficient in the exopolysaccharide capsule have lowered intrinsic resistance to peptide antibiotics, while a mutation affecting sugar precursors involved in both capsule and lipopolysaccharide synthesis sensitizes the bacterium to multiple antibiotic classes. We observed that, when grown in the presence of certain antibiotics below their MIC, including the translation inhibitors chloramphenicol and erythromycin, A. baumannii increases production of the K locus exopolysaccharide. Hyperproduction of capsular exopolysaccharide is reversible and non-mutational, and occurs concomitantly with increased resistance to the inducing antibiotic that is independent of the presence of the K locus. Strikingly, antibiotic-enhanced capsular exopolysaccharide production confers increased resistance to killing by host complement and increases virulence in a mouse model of systemic infection. Finally, we show that augmented capsule production upon antibiotic exposure is facilitated by transcriptional increases in K locus gene expression that are dependent on a two-component regulatory system, bfmRS. These studies reveal that the synthesis of capsule, a major pathogenicity determinant, is regulated in response to antibiotic stress. Our data are consistent with a model in which gene expression changes triggered by ineffectual antibiotic treatment cause A. baumannii to transition between states of low and high virulence potential, which may contribute to the opportunistic nature of the pathogen.
Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects
Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection.
Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S . Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S . Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control Vi polymerization or acetylation is enough to result in different capsule variants of S . Typhi. All variant strains are pathogenic, but the hyper Vi capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo Vi capsule variants have primarily been identified in Africa, whereas the hyper Vi capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S . Typhi, establish a solid foundation for numerous future studies on S . Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria. Here, Lee and Song describe missense mutations in the viaB locus in clinical isolates of Salmonella Typhi that result in hypo- and hyper-virulent phenotypes due to changes in the capsule.
Tolerance mechanisms in polysaccharide biosynthesis: Implications for undecaprenol phosphate recycling in Escherichia coli and Shigella flexneri
Bacterial polysaccharide synthesis is catalysed on the universal lipid carrier, undecaprenol phosphate (UndP). The cellular UndP pool is shared by different polysaccharide synthesis pathways including peptidoglycan biogenesis. Disruptions in cytosolic polysaccharide synthesis steps are detrimental to bacterial survival due to effects on UndP recycling. In contrast, bacteria can survive disruptions in the periplasmic steps, suggesting a tolerance mechanism to mitigate UndP sequestration. Here we investigated tolerance mechanisms to disruptions of polymerases that are involved in UndP-releasing steps in two related polysaccharide synthesis pathways: that for enterobacterial common antigen (ECA) and that for O antigen (OAg), in Escherichia coli and Shigella flexneri . Our study reveals that polysaccharide polymerisation is crucial for efficient UndP recycling. In E . coli K-12, cell survival upon disruptions in OAg polymerase is dependent on a functional ECA synthesis pathway and vice versa. This is because disruptions in OAg synthesis lead to the redirection of the shared lipid-linked sugar substrate UndPP-GlcNAc towards increased ECA production. Conversely, in S . flexneri , the OAg polymerase is essential due to its limited ECA production, which inadequately redirects UndP flow to support cell survival. We propose a model whereby sharing the initial sugar intermediate UndPP-GlcNAc between the ECA and OAg synthesis pathways allows UndP to be redirected towards ECA production, mitigating sequestration issues caused by disruptions in the OAg pathway. These findings suggest an evolutionary buffering mechanism that enhances bacterial survival when UndP sequestration occurs due to stalled polysaccharide biosynthesis, which may allow polysaccharide diversity in the species to increase over time.
The Extracellular Matrix Component Psl Provides Fast-Acting Antibiotic Defense in Pseudomonas aeruginosa Biofilms
Bacteria within biofilms secrete and surround themselves with an extracellular matrix, which serves as a first line of defense against antibiotic attack. Polysaccharides constitute major elements of the biofilm matrix and are implied in surface adhesion and biofilm organization, but their contributions to the resistance properties of biofilms remain largely elusive. Using a combination of static and continuous-flow biofilm experiments we show that Psl, one major polysaccharide in the Pseudomonas aeruginosa biofilm matrix, provides a generic first line of defense toward antibiotics with diverse biochemical properties during the initial stages of biofilm development. Furthermore, we show with mixed-strain experiments that antibiotic-sensitive \"non-producing\" cells lacking Psl can gain tolerance by integrating into Psl-containing biofilms. However, non-producers dilute the protective capacity of the matrix and hence, excessive incorporation can result in the collapse of resistance of the entire community. Our data also reveal that Psl mediated protection is extendible to E. coli and S. aureus in co-culture biofilms. Together, our study shows that Psl represents a critical first bottleneck to the antibiotic attack of a biofilm community early in biofilm development.
Pneumococcal Capsule Synthesis Locus cps as Evolutionary Hotspot with Potential to Generate Novel Serotypes by Recombination
Diversity of the polysaccharide capsule in Streptococcus pneumoniae—main surface antigen and the target of the currently used pneumococcal vaccines—constitutes a major obstacle in eliminating pneumococcal disease. Such diversity is genetically encoded by almost 100 variants of the capsule biosynthesis locus, cps. However, the evolutionary dynamics of the capsule remains not fully understood. Here, using genetic data from 4,519 bacterial isolates, we found cps to be an evolutionary hotspot with elevated substitution and recombination rates. These rates were a consequence of relaxed purifying selection and positive, diversifying selection acting at this locus, supporting the hypothesis that the capsule has an increased potential to generate novel diversity compared with the rest of the genome. Diversifying selection was particularly evident in the region of wzd/wze genes, which are known to regulate capsule expression and hence the bacterium’s ability to cause disease. Using a novel, capsule-centered approach, we analyzed the evolutionary history of 12 major serogroups. Such analysis revealed their complex diversification scenarios, which were principally driven by recombination with other serogroups and other streptococci. Patterns of recombinational exchanges between serogroups could not be explained by serotype frequency alone, thus pointing to nonrandom associations between co-colonizing serotypes. Finally, we discovered a previously unobserved mosaic serotype 39X, which was confirmed to carry a viable and structurally novel capsule. Adding to previous discoveries of other mosaic capsules in densely sampled collections, these results emphasize the strong adaptive potential of the bacterium by its ability to generate novel antigenic diversity by recombination.
Determining Streptococcus suis serotype from short-read whole-genome sequencing data
Background Streptococcus suis is divided into 29 serotypes based on a serological reaction against the capsular polysaccharide (CPS). Multiplex PCR tests targeting the cps locus are also used to determine S. suis serotypes, but they cannot differentiate between serotypes 1 and 14, and between serotypes 2 and 1/2. Here, we developed a pipeline permitting in silico serotype determination from whole-genome sequencing (WGS) short-read data that can readily identify all 29  S. suis serotypes. Results We sequenced the genomes of 121 strains representing all 29 known S. suis serotypes. We next combined available software into an automated pipeline permitting in silico serotyping of strains by differential alignment of short-read sequencing data to a custom S. suis cps loci database. Strains of serotype pairs 1 and 14, and 2 and 1/2 could be differentiated by a missense mutation in the cpsK gene . We report a 99 % match between coagglutination- and pipeline-determined serotypes for strains in our collection. We used 375 additional S. suis genomes downloaded from the NCBI’s Sequence Read Archive (SRA) to validate the pipeline. Validation with SRA WGS data resulted in a 92 % match. Included pipeline subroutines permitted us to assess strain virulence marker content and obtain multilocus sequence typing directly from WGS data. Conclusions Our pipeline permits rapid and accurate determination of S. suis serotype, and other lineage information, directly from WGS data. By discriminating between serotypes 1 and 14, and between serotypes 2 and 1/2, our approach solves a three-decade longstanding S. suis typing issue.
Exopolysaccharide protects Vibrio cholerae from exogenous attacks by the type 6 secretion system
The type 6 secretion system (T6SS) is a nanomachine used by many Gram-negative bacteria, including Vibrio cholerae, to deliver toxic effector proteins into adjacent eukaryotic and bacterial cells. Because the activity of the T6SS is dependent on direct contact between cells, its activity is limited to bacteria growing on solid surfaces or in biofilms. V. cholerae can produce an exopolysaccharide (EPS) matrix that plays a role in adhesion and biofilm formation. In this work, we investigated the effect of EPS production on T6SS activity between cells. We found that EPS produced by V. cholerae cells functions as a unidirectional protective armor that blocks exogenous T6SS attacks without interfering with its own T6SS functionality. This EPS armor is effective against both same-species and heterologous attackers. Mutations modulating the level of EPS biosynthesis gene expression result in corresponding modulation in V. cholerae resistance to exogenous T6SS attack. These results provide insight into the potential role of extracellular biopolymers, including polysaccharides, capsules, and S-layers in protecting bacterial cells from attacks involving cell-associated macromolecular protein machines that cannot readily diffuse through these mechanical defenses.