Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,260 result(s) for "Polysaccharides - biosynthesis"
Sort by:
Necessity of Different Lignocellulose on Exopolysaccharide Synthesis and Its Hypoglycemic Activity In Vitro of Inonotus obliquus
Current work proposes elm sawdust, poplar sawdust, pine sawdust, and cotton straw with different lignocellulose compositions and structures as the research objects to investigate the relationship between the hypoglycemic activity of mycelium polysaccharides from Inonotus obliquus and lignocellulose biodegradation. Four kinds of lignocellulosic materials could significantly increase the exopolysaccharide content and α-glucosidase inhibition rate and advance the occurrence time of α-glucosidase inhibition activity. Among all groups, the polysaccharide synthesis promotion effect of the cotton straw group was the best, which exopolysaccharide yield was 92.05% higher than that of the control group after 11-day fermentation. Meanwhile, the highest α-glucosidase inhibitory activity was found in the elm sawdust group on the 11th day (30.99%, which was 137.47% higher than control), and the exopolysaccharide in the elm sawdust group showed its effectiveness on glucose consumption of insulin resistant HepG2 cells at the concentration of 20 µg/mL, significantly higher than that of the metformin group ( P  < 0.05). The cellulose in the non-crystalline region of elm and pine and the hemicellulose of poplar were mainly used in the fermentation of I. obliquus , while the cellulose in the crystalline zone and amorphous zone of cotton straw was degraded to improve the exopolysaccharide content of I. obliquus . This paper revealed the necessity of different kinds of lignocellulose for the synthesis of active polysaccharide from I. obliquus and provided a new idea for the regulation of polysaccharide synthesis pathway.
Tolerance mechanisms in polysaccharide biosynthesis: Implications for undecaprenol phosphate recycling in Escherichia coli and Shigella flexneri
Bacterial polysaccharide synthesis is catalysed on the universal lipid carrier, undecaprenol phosphate (UndP). The cellular UndP pool is shared by different polysaccharide synthesis pathways including peptidoglycan biogenesis. Disruptions in cytosolic polysaccharide synthesis steps are detrimental to bacterial survival due to effects on UndP recycling. In contrast, bacteria can survive disruptions in the periplasmic steps, suggesting a tolerance mechanism to mitigate UndP sequestration. Here we investigated tolerance mechanisms to disruptions of polymerases that are involved in UndP-releasing steps in two related polysaccharide synthesis pathways: that for enterobacterial common antigen (ECA) and that for O antigen (OAg), in Escherichia coli and Shigella flexneri . Our study reveals that polysaccharide polymerisation is crucial for efficient UndP recycling. In E . coli K-12, cell survival upon disruptions in OAg polymerase is dependent on a functional ECA synthesis pathway and vice versa. This is because disruptions in OAg synthesis lead to the redirection of the shared lipid-linked sugar substrate UndPP-GlcNAc towards increased ECA production. Conversely, in S . flexneri , the OAg polymerase is essential due to its limited ECA production, which inadequately redirects UndP flow to support cell survival. We propose a model whereby sharing the initial sugar intermediate UndPP-GlcNAc between the ECA and OAg synthesis pathways allows UndP to be redirected towards ECA production, mitigating sequestration issues caused by disruptions in the OAg pathway. These findings suggest an evolutionary buffering mechanism that enhances bacterial survival when UndP sequestration occurs due to stalled polysaccharide biosynthesis, which may allow polysaccharide diversity in the species to increase over time.
De Novo Assembly and Analysis of Polygonatum sibiricum Transcriptome and Identification of Genes Involved in Polysaccharide Biosynthesis
Polygonatum sibiricum polysaccharides (PSPs) are used to improve immunity, alleviate dryness, promote the secretion of fluids, and quench thirst. However, the PSP biosynthetic pathway is largely unknown. Understanding the genetic background will help delineate that pathway at the molecular level so that researchers can develop better conservation strategies. After comparing the PSP contents among several different P. sibiricum germplasms, we selected two groups with the largest contrasts in contents and subjected them to HiSeq2500 transcriptome sequencing to identify the candidate genes involved in PSP biosynthesis. In all, 20 kinds of enzyme-encoding genes were related to PSP biosynthesis. The polysaccharide content was positively correlated with the expression patterns of β-fructofuranosidase (sacA), fructokinase (scrK), UDP-glucose 4-epimerase (GALE), Mannose-1-phosphate guanylyltransferase (GMPP), and UDP-glucose 6-dehydrogenase (UGDH), but negatively correlated with the expression of Hexokinase (HK). Through qRT-PCR validation and comprehensive analysis, we determined that sacA, HK, and GMPP are key genes for enzymes within the PSP metabolic pathway in P. sibiricum. Our results provide a public transcriptome dataset for this species and an outline of pathways for the production of polysaccharides in medicinal plants. They also present more information about the PSP biosynthesis pathway at the molecular level in P. sibiricum and lay the foundation for subsequent research of gene functions.
Transcriptomics Reveals Host-Dependent Differences of Polysaccharides Biosynthesis in Cynomorium songaricum
Cynomorium songaricum is a root holoparasitic herb that is mainly hosted in the roots of Nitraria roborowskii and Nitraria sibirica distributed in the arid desert and saline-alkaline regions. The stem of C. songaricum is widely used as a traditional Chinese medicine and applied in anti-viral, anti-obesity and anti-diabetes, which largely rely on the bioactive components including: polysaccharides, flavonoids and triterpenes. Although the differences in growth characteristics of C. songaricum between N. roborowskii and N. sibirica have been reported, the difference of the two hosts on growth and polysaccharides biosynthesis in C. songaricum as well as regulation mechanism are not limited. Here, the physiological characteristics and transcriptome of C. songaricum host in N. roborowskii (CR) and N. sibirica (CS) were conducted. The results showed that the fresh weight, soluble sugar content and antioxidant capacity on a per stem basis exhibited a 3.3-, 3.0- and 2.1-fold increase in CR compared to CS. A total of 16,921 differentially expressed genes (DEGs) were observed in CR versus CS, with 2573 characterized genes, 1725 up-regulated and 848 down-regulated. Based on biological functions, 50 DEGs were associated with polysaccharides and starch metabolism as well as their transport. The expression levels of the selected 37 genes were validated by qRT-PCR and almost consistent with their Reads Per kb per Million values. These findings would provide useful references for improving the yield and quality of C. songaricum.
Structure and mechanism of biosynthesis of Streptococcus mutans cell wall polysaccharide
Streptococcus mutans , the causative agent of human dental caries, expresses a cell wall attached Serotype c- specific Carbohydrate (SCC) that is critical for cell viability. SCC consists of a polyrhamnose backbone of →3)α-Rha(1 → 2)α-Rha(1→ repeats with glucose (Glc) side-chains and glycerol phosphate (GroP) decorations. This study reveals that SCC has one predominant and two more minor Glc modifications. The predominant Glc modification, α-Glc, attached to position 2 of 3-rhamnose, is installed by SccN and SccM glycosyltransferases and is the site of the GroP addition. The minor Glc modifications are β-Glc linked to position 4 of 3-rhamnose installed by SccP and SccQ glycosyltransferases, and α-Glc attached to position 4 of 2-rhamnose installed by SccN working in tandem with an unknown enzyme. Both the major and the minor β-Glc modifications control bacterial morphology, but only the GroP and major Glc modifications are critical for biofilm formation. The cell wall of the oral bacterium Streptococcus mutans carries SCC, a rhamnose-containing polysaccharide with glucose side-chain decorations. Here, the authors report the SCC structure and the synthesis mechanism, revealing how four glucosyltransferases work together to synthesize the side-chains.
Improved mycelia and polysaccharide production of Grifola frondosa by controlling morphology with microparticle Talc
Background Mushroom showed pellet, clump and/or filamentous mycelial morphologies during submerged fermentation. Addition of microparticles including Talc (magnesium silicate), aluminum oxide and titanium oxide could control mycelial morphologies to improve mycelia growth and secondary metabolites production. Here, effect of microparticle Talc (45 μm) addition on the mycelial morphology, fermentation performance, monosaccharide compositions of polysaccharides and enzymes activities associated with polysaccharide synthesis in G. frondosa was well investigated to find a clue of the relationship between polysaccharide biosynthesis and morphological changes. Results Addition of Talc decreased the diameter of the pellets and increased the percentage of S-fraction mycelia. Talc gave the maximum mycelial biomass of 19.25 g/L and exo-polysaccharide of 3.12 g/L at 6.0 g/L of Talc, and mycelial polysaccharide of 0.24 g/g at 3.0 g/L of Talc. Talc altered the monosaccharide compositions/percentages in G. frondosa mycelial polysaccharide with highest mannose percentage of 62.76 % and lowest glucose percentage of 15.22 % followed with the corresponding changes of polysaccharide-synthesis associated enzymes including lowest UDP-glucose pyrophosphorylase (UGP) activity of 91.18 mU/mg and highest UDP-glucose dehydrogenase (UGDG) and GDP-mannose pyrophosphorylase (GMPPB) activities of 81.45 mU/mg and 93.15 mU/mg. Conclusion Our findings revealed that the presence of Talc significantly changed the polysaccharide production and sugar compositions/percentages in mycelial and exo-polysaccharides by affecting mycelial morphology and polysaccharide-biosynthesis related enzymes activities of G. frondosa .
Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea
Extreme environments, generally characterized by atypical temperatures, pH, pressure, salinity, toxicity, and radiation levels, are inhabited by various microorganisms specifically adapted to these particular conditions, called extremophiles. Among these, the microorganisms belonging to the Archaea domain are of significant biotechnological importance as their biopolymers possess unique properties that offer insights into their biology and evolution. Particular attention has been devoted to two main types of biopolymers produced by such peculiar microorganisms, that is, the extracellular polysaccharides (EPSs), considered as a protection against desiccation and predation, and the endocellular polyhydroxyalkanoates (PHAs) that provide an internal reserve of carbon and energy. Here, we report the composition, biosynthesis, and production of EPSs and PHAs by different archaeal species.
In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz
O-polysaccharide is a major constituent of the bacterial cell wall, yet little mechanistic information is known about its biosynthesis. A reconstruction of this pathway using defined substrates now demonstrates the basis for sugar polymerization and length modulation. Polysaccharides constitute a major component of bacterial cell surfaces and play critical roles in bacteria–host interactions. The biosynthesis of such molecules, however, has mainly been characterized through in vivo genetic studies, thus precluding discernment of the details of this pathway. Accordingly, we present a chemical approach that enabled reconstitution of the E. coli O-polysaccharide biosynthetic pathway in vitro . Starting with chemically prepared undecaprenyl-diphospho- N -acetyl- D -galactosamine, the E. coli O86 oligosaccharide repeating unit was assembled by means of sequential enzymatic glycosylation. Successful expression of the putative polymerase Wzy using a chaperone coexpression system then allowed demonstration of polymerization in vitro using this substrate. Analysis of more substrates revealed a defined mode of recognition for Wzy toward the lipid moiety. Specific polysaccharide chain length modality was furthermore demonstrated to result from the action of Wzz. Collectively, polysaccharide biosynthesis was chemically reconstituted in vitro , providing a well defined system for further underpinning molecular details of this biosynthetic pathway.
Regulating exopolysaccharide gene wcaF allows control of Escherichia coli biofilm formation
While biofilms are known to cause problems in many areas of human health and the industry, biofilms are important in a number of engineering applications including wastewater management, bioremediation, and bioproduction of valuable chemicals. However, excessive biofilm growth remains a key challenge in the use of biofilms in these applications. As certain amount of biofilm growth is required for efficient use of biofilms, the ability to control and maintain biofilms at desired thickness is vital. To this end, we developed synthetic gene circuits to control E . coli MG1655 biofilm formation by using CRISPRi/dCas9 to regulate a gene (wcaF) involved in the synthesis of colanic acid (CA), a key polysaccharide in E . coli biofilm extracellular polymeric substance (EPS). We showed that the biofilm formation was inhibited when wcaF was repressed and the biofilms could be maintained at a different thickness over a period of time. We also demonstrated that it is also possible to control the biofilm thickness spatially by inhibiting wcaF gene using a genetic light switch. The results demonstrate that the approach has great potential as a new means to control and maintain biofilm thickness in biofilm related applications.
A single-domain response regulator activates exopolysaccharide biosynthesis by interaction with the initiating phosphoglycosyl transferase
Bacteria produce various polysaccharides with important biological functions and biotechnological applications. Polysaccharide synthesis is energy-costly and requires substrates that are in limited supply, raising the question of how bacteria regulate these pathways. Here, we explored the regulation of exopolysaccharide biosynthesis in Myxococcus xanthus . We demonstrate that the phosphorylated single-domain response regulator EpsW activates exopolysaccharide biosynthesis at the post-translational level by stimulating the activity of the phosphoglycosyl transferase EpsZ. By interacting with EpsZ, phosphorylated EpsW facilitates the formation of the active, dimeric conformation of EpsZ, thereby activating exopolysaccharide biosynthesis at its initial step. We propose that this previously unrecognized regulatory mechanism is broadly conserved, not only in myxobacteria but also beyond.