Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,769
result(s) for
"Polyurethanes - chemistry"
Sort by:
Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo
2021
The unique properties of self-healing materials hold great potential in the field of biomedical engineering. Although previous studies have focused on the design and synthesis of self-healing materials, their application in in vivo settings remains limited. Here, we design a series of biodegradable and biocompatible self-healing elastomers (SHEs) with tunable mechanical properties, and apply them to various disease models in vivo, in order to test their reparative potential in multiple tissues and at physiological conditions. We validate the effectiveness of SHEs as promising therapies for aortic aneurysm, nerve coaptation and bone immobilization in three animal models. The data presented here support the translation potential of SHEs in diverse settings, and pave the way for the development of self-healing materials in clinical contexts.
The unique properties of self-healing materials hold great potential in the field of biomedical engineering. Here, the authors designed a series of biodegradable and biocompatible self-healing elastomers with tunable mechanical properties, and apply them to various disease models in vivo, including aortic aneurism, bone fracture and nerve amputation.
Journal Article
Entropy and interfacial energy driven self-healable polymers
2020
Although significant advances have been achieved in dynamic reversible covalent and non-covalent bonding chemistries for self-healing polymers, an ultimate goal is to create high strength and stiffness commodity materials capable of repair without intervention under ambient conditions. Here we report the development of mechanically robust thermoplastic polyurethane fibers and films capable of autonomous self-healing under ambient conditions. Two mechanisms of self-healing are identified: viscoelastic shape memory (VESM) driven by conformational entropic energy stored during mechanical damage, and surface energy/tension that drives the reduction of newly generated surface areas created upon damage by shallowing and widening wounds until healed. The type of self-healing mechanism is molecular weight dependent. To the best of our knowledge these materials represent the strongest (
S
f
= 21 mN/tex, or
σ
f
≈ 22 MPa) and stiffest (
J
= 300 mN/tex, or
E
≈ 320 MPa) self-healing polymers able to repair under typical ambient conditions without intervention. Since two autonomous self-healing mechanisms result from viscoelastic behavior not specific to a particular polymer chemistry, they may serve as general approaches to design of other self-repairing commodity polymers.
Different self-healing materials were developed in the past but development of mechanically robust and affordable self-healing materials with high strain and stiffness is challenging. Here the authors develop mechanically robust thermoplastic polyurethane fibers and films capable of autonomous self-healing under ambient conditions.
Journal Article
Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering
by
Gorji Mohsen
,
Chen Xiongbiao
,
Sadeghianmaryan Ali
in
Biocompatibility
,
Biological properties
,
Contact angle
2020
Creating scaffolds for skin tissue engineering remain challenging in terms of their mechanical and biological properties. In this paper, we present a study on the nanocomposite polyurethane (PU)/polycaprolactone (PCL) scaffolds with graphene oxide (GO), which were fabricated by using electrospinning method, for potential skin tissue engineering. For this, homogenous and soft PU nanofibers containing varying percent of polycaprolactone (12% and 15%) and nano GO (0.5–4%) were electrospun, respectively, and then characterized by different techniques/assays in vitro. For the scaffold characterization, scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used. The SEM results show the spun scaffolds have 3D porous structure (90%) with the fiber diameter increased with the GO concentration, while the FTIR results confirmed the presence of PU, PCL, and Go in the scaffolds. Also, the biocompatibility, via the cytotoxicity, of the scaffolds was examined by MTT assay with the human skin fibroblast cells, along with their wettability in terms of contact angle. Our results show that the scaffolds are biocompatible to the skin fibroblast cell, illustrating their potential use in skin tissue engineering. Also, our results illustrate that the addition of GO to the PU/PCL composite can increase the wettability (or hydrophilicity) and biocompatibility of scaffolds. Combined together, the nanocomposite PU/PCL scaffolds with GO are promising as biocompatible constructs for skin tissue engineering.
Journal Article
Recent Advances in Polyurethane/POSS Hybrids for Biomedical Applications
by
Pielichowski, Krzysztof
,
Ozimek, Jan
in
Antineoplastic Agents - chemistry
,
Antineoplastic Agents - pharmacology
,
Biocompatible Materials - chemistry
2021
Advanced organic-inorganic materials-composites, nanocomposites, and hybrids with various compositions offer unique properties required for biomedical applications. One of the most promising inorganic (nano)additives are polyhedral oligomeric silsesquioxanes (POSS); their biocompatibility, non-toxicity, and phase separation ability that modifies the material porosity are fundamental properties required in modern biomedical applications. When incorporated, chemically or physically, into polyurethane matrices, they substantially change polymer properties, including mechanical properties, surface characteristics, and bioactivity. Hence, this review is dedicated to POSS-PU composites that have recently been developed for applications in the biomedical field. First, different modes of POSS incorporation into PU structure have been presented, then recent developments of PU/POSS hybrids as bio-active composites for scaffolds, cardiovascular stents, valves, and membranes, as well as in bio-imaging and cancer treatment, have been described. Finally, characterization and methods of modification routes of polyurethane-based materials with silsesquioxanes were presented.
Journal Article
Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration
by
Li, Song
,
Ameer, Guillermo A.
,
Banks, Anthony
in
631/61/54/990
,
639/301/1005/1007
,
639/301/54/993
2020
Bioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections. Here, we present advanced materials that support operation in these systems over clinically relevant timeframes, ultimately bioresorbing harmlessly to benign products without residues, to eliminate the need for surgical extraction. Our findings overcome key challenges of bioresorbable electronic devices by realizing lifetimes that match clinical needs. The devices exploit a bioresorbable dynamic covalent polymer that facilitates tight bonding to itself and other surfaces, as a soft, elastic substrate and encapsulation coating for wireless electronic components. We describe the underlying features and chemical design considerations for this polymer, and the biocompatibility of its constituent materials. In devices with optimized, wireless designs, these polymers enable stable, long-lived operation as distal stimulators in a rat model of peripheral nerve injuries, thereby demonstrating the potential of programmable long-term electrical stimulation for maintaining muscle receptivity and enhancing functional recovery.
Bioresorbable electronic stimulators can deliver electrical stimulation in rodents to enhance functional muscle recovery after nerve injury. Here, the authors present a bioresorbable dynamic covalent polymer that enables reliable, long-lived operation of soft, stretchable devices of this type.
Journal Article
Waterborne Polyurethane Dispersions and Thin Films: Biodegradation and Antimicrobial Behaviors
2021
Biodegradable and antimicrobial waterborne polyurethane dispersions (PUDs) and their casted solid films have recently emerged as important alternatives to their solvent-based and non-biodegradable counterparts for various applications due to their versatility, health, and environmental friendliness. The nanoscale morphology of the PUDs, dispersion stability, and the thermomechanical properties of the solid films obtained from the solvent cast process are strongly dependent on several important parameters, such as the preparation method, polyols, diisocyanates, solid content, chain extension, and temperature. The biodegradability, biocompatibility, antimicrobial properties and biomedical applications can be tailored based on the nature of the polyols, polarity, as well as structure and concentration of the internal surfactants (anionic or cationic). This review article provides an important quantitative experimental basis and structure evolution for the development and synthesis of biodegradable waterborne PUDs and their solid films, with prescribed macromolecular properties and new functions, with the aim of understanding the relationships between polymer structure, properties, and performance. The review article will also summarize the important variables that control the thermomechanical properties and biodegradation kinetics, as well as antimicrobial and biocompatibility behaviors of aqueous PUDs and their films, for certain industrial and biomedical applications.
Journal Article
A Comprehensive Review of Reactive Flame Retardants for Polyurethane Materials: Current Development and Future Opportunities in an Environmentally Friendly Direction
by
Parcheta-Szwindowska, Paulina
,
Krzemińska, Izabela
,
Datta, Janusz
in
Additives
,
Chemical bonds
,
Combustion
2024
Polyurethanes are among the most significant types of polymers in development; these materials are used to produce construction products intended for work in various conditions. Nowadays, it is important to develop methods for fire load reduction by using new kinds of additives or monomers containing elements responsible for materials’ fire resistance. Currently, additive antipyrines or reactive flame retardants can be used during polyurethane material processing. The use of additives usually leads to the migration or volatilization of the additive to the surface of the material, which causes the loss of the resistance and aesthetic values of the product. Reactive flame retardants form compounds containing special functional groups that can be chemically bonded with monomers during polymerization, which can prevent volatilization or migration to the surface of the material. In this study, reactive flame retardants are compared. Their impacts on polyurethane flame retardancy, combustion mechanism, and environment are described.
Journal Article
Enzymatic characterization and polyurethane biodegradation assay of two novel esterases isolated from a polluted river
by
Pardo-López, Liliana
,
Soto-Hernández, Arianna
,
Muriel-Millán, Luis Felipe
in
Acinetobacter - enzymology
,
Acinetobacter - genetics
,
Bacterial Proteins - genetics
2025
The environmental ubiquity of plastic materials generates global concern, pollution, and health problems. Microorganisms and enzymes with plastic biodegradation potential are considered as environmentally friendly alternatives to address these issues. Interestingly, polluted environments exert selective pressure on native microbial communities that have the metabolic capacity to tolerate and transform different contaminants, including plastics. A number of enzymes have been described as polyurethane degraders. However, some of them do not possess complete characterization or efficient degradation rates. Hence, there is still a need to identify and characterize efficient enzymes for application in green processes for plastic recycling. Here, we used an environmental DNA sample isolated from the sediments of a polluted river in Mexico (Apatlaco River), which was used to construct a metagenomic fosmid library to explore the metabolic potential of microbial communities for polyurethane biodegradation. Functional screenings were performed on agar media containing the polyester polyurethane Impranil DLN (Impranil), and positively selected fosmid DNA was identified and sequenced by Illumina. Bioinformatic analyses identified two Acinetobacter genes ( epux1 and epux2) encoding alpha/beta hydrolases. The genes were heterologously expressed to determine the capacity of their encoded proteins for Impranil clearing. Both Epux1 and Epux2 enzymes exhibited Impranil cleavage at 30 °C and 15 °C and ester group modifications were validated by infrared spectroscopy. Furthermore, the release of building blocks of the polymer was determined by GC-MS analysis, thus indicating their esterase/polyurethanase activity. Overall, our results demonstrate the potential of these novel bacterial enzymes for the hydrolysis of polyurethane with potential applications in the circular plastics economy.
Journal Article
Synthesis of Bio-Based Polyurethanes from Functionalized Sunflower Seed Oil
by
Cserháti, Csaba
,
Nagy, Lajos
,
Lakatos, Csilla
in
Glycerol
,
Hydrogen peroxide
,
Mechanical properties
2025
In this study, bio-based polyurethanes (PUs) were synthesized using renewable polyols derived from sunflower seed oil, aiming to develop flexible yet robust polymeric films and scaffolds. Given their composition and favorable physico-chemical properties, these materials may represent promising candidates for the design and development of advanced biomedical systems. Two distinct oil polyols were prepared via glycerol transesterification (GM) and epoxidation (EPO) with hydrogen peroxide/glacial acetic acid, respectively. These polyols, in combination with poly(tetramethylene ether) glycol (PTMEG) and/or poly(ethylene glycol) (PEG), served as diol components in a one-step reaction with 1,6-hexamethylene diisocyanate (HDI). The structure of the polyol precursors was thoroughly characterized by MALDI-TOF MS and NMR spectroscopy, confirming successful functionalization. The resulting PU films exhibited excellent flexibility (885%) and mechanical properties (23 MPa), as evaluated by ATR-FTIR, Tensile test, DSC, DMA and SEM methods. The crosslink density of the order of 10−3 also contributes to the development of outstanding mechanical properties. Stress relaxation experiments were described using a stretched exponential (Kohlrausch–Williams–Watts) model to capture the viscoelastic behavior of the materials. In addition, stress vs. relative elongation curves revealing strain-hardening behavior were also analyzed and modeled mathematically to better describe the mechanical response under deformation. Furthermore, salt leaching techniques were employed to fabricate porous scaffolds. This work highlights the versatility of vegetable oil-based feedstocks in producing functional polyurethanes with tunable mechanical properties for applied polymer systems.
Journal Article
Flame-Retardant Systems Based on Chitosan and Its Derivatives: State of the Art and Perspectives
2020
During the last decade, the utilization of chitin, and in par0ticular its deacetylated form, i.e., chitosan, for flame retardant purposes, has represented quite a novel and interesting application, very far from the established uses of this bio-sourced material. In this context, chitosan is a carbon source that can be successfully exploited, often in combination with intumescent products, in order to provide different polymer systems (namely, bulky materials, fabrics and foams) with high flame retardant (FR) features. Besides, this specific use of chitosan in flame retardance is well suited to a green and sustainable approach. This review aims to summarize the recent advances concerning the utilization of chitosan as a key component in the design of efficient flame retardant systems for different polymeric materials.
Journal Article