Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
15,772 result(s) for "Population cycle"
Sort by:
Availability of Food and the Population Dynamics of Arvicoline Rodents
Availability of food may play a number of different dynamical roles in rodent-vegetation systems. Consideration of a suite of rodent-vegetation models, ranging from very simple ones to a model of medium complexity tailored to a specific system (brown lemmings at Point Barrow, Alaska, USA), suggested several general principles. If vegetation grows logistically following an herbivory event (a standard assumption of previously advanced models for herbivore-plant interactions), then almost any biologically reasonable combinations of parameters characterizing rodent-vegetation systems would result in population cycles. We argue, however, that the assumption of logistic growth of the food supply may be appropriate for only a few species, such as moss-eating lemmings. The dynamics of food supply for many arvicoline (microtine) rodents may be better described by a \"linear initial regrowth\" model, which exhibits globally stable dynamics. If this is so, quantitative interactions with food supply are unlikely to explain multiannual population cycles for most boreal or temperate voles. The role of food in population dynamics, however, is not limited to its potential to generate cycles. A tritrophic model including vegetation, rodents, and their specialist predators suggests that food limitation may provide direct density dependence needed for sustained oscillations in this system (which is usually modeled by a phenomenological logistic term in the prey equation). We relate the general theory that we developed to one specific system where we have enough data to arrive at reasonable estimates for most of the parameters-brown lemmings at Point Barrow. The Barrow model exhibits oscillations of the approximately correct period and amplitude, thus giving some theoretical support to the food hypothesis. Nevertheless, we suggest that this result should be treated cautiously because key events explaining the population cycle in the model occur during winter, but winter biology of lemmings is still poorly understood.
Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages
Spatial synchrony in population dynamics can be caused by dispersal or spatially correlated variation in environmental factors like weather (Moran effect). Distinguishing between these mechanisms is challenging for natural populations, and the study of dispersal‐induced synchrony in particular has been dominated by theoretical modelling and laboratory experiments. The goal of the present study was to evaluate the evidence for dispersal as a cause of meso‐scale (distances of tens of kilometres) spatial synchrony in natural populations of the two cyclic geometrid moths Epirrita autumnata and Operophtera brumata in sub‐arctic mountain birch forest in northern Norway. To infer the role of dispersal in geometrid synchrony, we applied three complementary approaches, namely estimating the effect of design‐based dispersal barriers (open sea) on synchrony, comparing the strength of synchrony between E. autumnata (winged adults) and the less dispersive O. brumata (wingless adult females), and relating the directionality (anisotropy) of synchrony to the predominant wind directions during spring, when geometrid larvae engage in windborne dispersal (ballooning). The estimated effect of dispersal barriers on synchrony was almost three times stronger for the less dispersive O. brumata than E. autumnata. Inter‐site synchrony was also weakest for O. brumata at all spatial lags. Both observations argue for adult dispersal as an important synchronizing mechanism at the spatial scales considered. Further, synchrony in both moth species showed distinct anisotropy and was most spatially extensive parallel to the east–west axis, coinciding closely to the overall dominant wind direction. This argues for a synchronizing effect of windborne larval dispersal. Congruent with most extensive dispersal along the east–west axis, E. autumnata also showed evidence for a travelling wave moving southwards at a speed of 50–80 km/year. Our results suggest that dispersal processes can leave clear signatures in both the strength and directionality of synchrony in field populations, and highlight wind‐driven dispersal as promising avenue for further research on spatial synchrony in natural insect populations. The study of dispersal‐induced spatial synchrony in population dynamics has relied heavily on theory and laboratory experiments. The current long‐term field study indicates that both larval and adult dispersal are important synchronizing mechanisms in natural populations of two sympatric geometrid moths, and highlights wind as determining the directionality of synchrony.
Top-down limitation of lemmings revealed by experimental reduction of predators
It is generally recognized that delayed density-dependence is responsible for cyclic population dynamics. However, it is still uncertain whether a single factor can explain why some rodent populations fluctuate according to a 3–4 yr periodicity. There is increasing evidence that predation may play a role in lemming population cycles, although this effect may vary seasonally. To address this issue, we conducted an experiment where we built a large exclosure (9 ha) to protect brown lemmings (Lemmus trimucronatus) from avian and terrestrial predators. We tested the hypothesis that predation is a limiting factor for lemmings by measuring the demographic consequences of a predator reduction during the growth and peak phases of the cycle. We assessed summer (capture-mark-recapture methods) and winter (winter nest sampling) lemming demography on two grids located on Bylot Island, Nunavut, Canada from 2008 to 2015. The predator exclosure became fully effective in July 2013, allowing us to compare demography between the control and experimental grids before and during the treatment. Lemming abundance, survival and proportion of juveniles were similar between the two grids before the treatment. During the predator-reduction period, summer densities were on average 1.9× higher inside the experimental grid than the control and this effect was greatest for adult females and juveniles (densities 2.4× and 3.4× higher, respectively). Summer survival was 1.6× higher on the experimental grid than the control whereas body mass and proportion of juveniles were also slightly higher. Winter nest densities remained high inside the predator reduction grid following high summer abundance, but declined on the control grid. These results confirm that predation limits lemming population growth during the summer due to its negative impact on survival. However, it is possible that in winter, predation may interact with other factors affecting reproduction and ultimately population cycles.
From individuals to population cycles: the role of extrinsic and intrinsic factors in rodent populations
Rodent population cycles have fascinated scientists for a long time. Among various hypotheses, an interaction of an extrinsic factor (predation) with intrinsic factors (e.g., sociality and dispersal) was suggested to lead to the generation of population cycles. Here, we tested this hypothesis with an individual‐based model fully parameterized with an exceptionally rich empirical database on vole life histories. We employed a full factorial design that included models with the following factors: predation only, predation and sociality, predation and dispersal, and predation and both sociality and dispersal. A comprehensive set of metrics was used to compare results of these four models with the long‐term population dynamics of natural vole populations. Only the full model, which included both intrinsic factors and predation, yielded cycle periods, amplitudes, and autumn population sizes closest to those observed in nature. Our approach allows to model, as emergent properties of individual life histories, the sort of nonlinear density‐ and phase‐dependence that is expected to destabilize population dynamics. We suggest that the individual‐based approach is useful for addressing the effects of other mechanisms on rodent populations that operate at finer temporal and spatial scales than have been explored with models so far.
Seasonal demography of a cyclic lemming population in the Canadian Arctic
The causes of cyclical fluctuations in animal populations remain a controversial topic in ecology. Food limitation and predation are two leading hypotheses to explain small mammal population dynamics in northern environments. We documented the seasonal timing of the decline phases and demographic parameters (survival and reproduction) associated with population changes in lemmings, allowing us to evaluate some predictions from these two hypotheses. We studied the demography of brown lemmings (Lemmus trimucronatus), a species showing 3‐ to 4‐year population cycles in the Canadian Arctic, by combining capture–mark–recapture analysis of summer live‐trapping with monitoring of winter nests over a 10‐year period. We also examined the effects of some weather variables on survival. We found that population declines after a peak occurred between the summer and winter period and not during the winter. During the summer, population growth was driven by change in survival, but not in fecundity or proportion of juveniles, whereas in winter population growth was driven by changes in late summer and winter reproduction. We did not find evidence for direct density dependence on summer demographic parameters, though our analysis was constrained by the paucity of data during the low phase. Body mass, however, was highest in peak years. Weather effects were detected only in early summer when lemming survival was positively related to snow depth at the onset of melt but negatively related to rainfall. Our results show that high mortality causes population declines of lemmings during summer and fall, which suggests that predation is sufficient to cause population crashes, whereas high winter fecundity is the primary factor leading to population irruptions. The positive association between snow depth and early summer survival may be due to the protective cover offered by snow against predators. It is still unclear why reproduction remains low during the low phase.
Return of the moth
The sudden interruption of recurring larch budmoth (LBM; Zeiraphera diniana or griseana Gn.) outbreaks across the European Alps after 1982 was surprising, because populations had regularly oscillated every 8–9 years for the past 1200 years or more. Although ecophysiological evidence was limited and underlying processes remained uncertain, climate change has been indicated as a possible driver of this disruption. An unexpected, recent return of LBM population peaks in 2017 and 2018 provides insight into this insect’s climate sensitivity. Here, we combine meteorological and dendrochronological data to explore the influence of temperature variation and atmospheric circulation on cyclic LBM outbreaks since the early 1950s. Anomalous cold European winters, associated with a persistent negative phase of the North Atlantic Oscillation, coincide with four consecutive epidemics between 1953 and 1982, and any of three warming-induced mechanisms could explain the system’s failure thereafter: (1) high egg mortality, (2) asynchrony between egg hatch and foliage growth, and (3) upward shifts of outbreak epicentres. In demonstrating that LBM populations continued to oscillate every 8–9 years at sub-outbreak levels, this study emphasizes the relevance of winter temperatures on trophic interactions between insects and their host trees, as well as the importance of separating natural from anthropogenic climate forcing on population behaviour.
End-user involvement to improve predictions and management of populations with complex dynamics and multiple drivers
Sustainable management of wildlife populations can be aided by building models that both identify current drivers of natural dynamics and provide near-term predictions of future states. We employed a Strategic Foresight Protocol (SFP) involving stakeholders to decide the purpose and structure of a dynamic state-space model for the population dynamics of the Willow Ptarmigan, a popular game species in Norway. Based on local knowledge of stakeholders, it was decided that the model should include food web interactions and climatic drivers to provide explanatory predictions. Modeling confirmed observations from stakeholders that climate change impacts Ptarmigan populations negatively through intensified outbreaks of insect defoliators and later onset of winter. Stakeholders also decided that the model should provide anticipatory predictions. The ability to forecast population density ahead of the harvest season was valued by the stakeholders as it provides the management extra time to consider appropriate harvest regulations and communicate with hunters prior to the hunting season. Overall, exploring potential drivers and predicting short-term future states, facilitate collaborative learning and refined data collection, monitoring designs, and management priorities. Our experience from adapting a SFP to a management target with inherently complex dynamics and drivers of environmental change, is that an open, flexible, and iterative process, rather than a rigid step-wise protocol, facilitates rapid learning, trust, and legitimacy.
Contribution of late-litter juveniles to the population dynamics of snowshoe hares
Determining the factors driving cyclic dynamics in species has been a primary focus of ecology. For snowshoe hares (Lepus americanus), explanations of their 10-year population cycles most commonly feature direct predation during the peak and decline, in combination with their curtailment in reproduction. Hares are thought to stop producing third and fourth litters during the cyclic decline and do not recover reproductive output for several years. The demographic effects of these reproductive changes depend on the consistency of this pattern across cycles, and the relative contribution to population change of late-litter versus early litter juveniles. We used monitoring data on snowshoe hares in Yukon, Canada, to examine the contribution of late-litter juveniles to the demography of their cycles, by assigning litter group for individuals caught in autumn based on body size and capture date. We found that fourth-litter juveniles occur consistently during the increase phase of each cycle, but are rare and have low over-winter survival (0.05) suggesting that population increase is unlikely to be caused by their occurrence. The proportion of third-litter juveniles captured in the autumn remains relatively constant across cycle phases, while over-winter survival rates varies particularly for earlier-litter juveniles (0.14–0.39). Juvenile survival from all litters is higher during the population increase and peak, relative to the low and decline. Overall, these results suggest that the transition from low phase to population growth may stem in large part from changes in juvenile survival as opposed to increased reproductive output through the presence of a 4th litter.
Population dynamics and spatial ecology of a declining desert rodent, Pseudomys australis: the importance of refuges for persistence
Desert rodents exhibit irruptive (boom–bust) population dynamics in response to pulses of primary productivity. Such unpredictable population dynamics are a challenge for monitoring population trends and managing populations, particularly for species in decline. We studied the population dynamics and occurrence of populations of the vulnerable plains mouse, Pseudomys australis (42-g body mass), during the low (bust) phase of the cycle in the Simpson Desert, Australia, to examine the use of refuges by the species and the predation pressure experienced from native and introduced predators. Specifically we investigated landscape-scale occurrence; body mass, reproduction, and population size; and presence of native and introduced predators. Our results demonstrate that P. australis contracted to discrete areas of the landscape (refuges) during the low phase and that these areas occupied a small proportion (∼17%) of the range occupied during population peaks. Animals in refuge populations had comparable body mass, occurred at similar densities to populations during the boom phase, and continued to reproduce during dry conditions. Such refuges represented a significant concentration of biomass to predators in a resource-poor environment. Native predators were rare during the low phase, suggesting that refuges naturally experienced low predation levels. Two introduced predators, feral house cats and red foxes, persisted during the low phase and exploited refuge populations of P. australis, thus representing a significant threat to population persistence. We advocate a novel approach to management of rodents in arid systems that involves identifying the discrete parts of the landscape that function as drought refuges and then focusing threat management there. The relatively small size of these refuges increases the likelihood of cost-effective management.
Effect of Resource Abundance on Woodland Rodents' Demography at Latitudinal Extremes in Europe
ABSTRACT Climate change effects on primary productivity are especially evident along altitudinal and latitudinal gradients. Some of the species with a fast reproductive cycle strategy and relying on primary productivity may rapidly respond to such changes with alterations to demographic parameters. However, how these bottom‐up effects may emerge in systems with different population dynamics has not been elucidated. We aimed to assess the role of food availability on rodent demography in populations characterised by different dynamics, that is multiannual cycles in Northern European populations and mast‐driven outbreaks in Southern European populations, both driven by intrinsic and extrinsic factors. We live‐trapped woodland rodents at these latitudinal extremes in two study systems (Norway, Italy) while deploying control/treatment designs of food manipulation providing ad libitum trophic resource availability, albeit not reflecting the natural resource fluctuations. We applied a multistate open robust design model to estimate population patterns and survival rates while controlling for seasonal variation, intrinsic traits, and co‐occurrence of sympatric species. Yellow‐necked and wood mouse (Apodemus spp.) were sympatric with bank vole (Clethrionomys glareolus) in Italy, while only the latter was trapped in Norway. Food provisioning increased both survival and population size of bank vole in Norway, where temperatures are harsher and snow cover persists in winter. In milder Italian habitats, the wood mouse abundance was boosted by food availability, increasing also survival rates (but only in females), whereas the bank vole showed a decrease in both parameters across sexes. We speculate that overabundant food resources may trigger some forms of competition between sympatric wood mouse and bank vole, although other types of interactions, such as predation and parasitism, may also contribute. By manipulating food availability in two systems where rodents have different population dynamics, we showed how resource availability exerted bottom‐up effects on rodent demography, especially in the context of climate change, although being mediated by other intrinsic and extrinsic factors. The study aimed to assess the role of food availability on rodent demography in populations characterised by different dynamics, that is multiannual cycles in Northern European populations and mast‐driven outbreaks in Southern European populations.