Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,510 result(s) for "Populus - growth "
Sort by:
Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus
Wood development is strictly regulated by various phytohormones and auxin plays a central regulatory role in this process. However, how the auxin signaling is transducted in developing secondary xylem during wood formation in tree species remains unclear. Here, we identified an Aux/INDOLE-3-ACETIC ACID 9 (IAA9)-AUXIN RESPONSE FACTOR 5 (ARF5) module in Populus tomentosa as a key mediator of auxin signaling to control early developing xylem development. PtoIAA9, a canonical Aux/IAA gene, is predominantly expressed in vascular cambium and developing secondary xylem and induced by exogenous auxin. Overexpression of PtoIAA9m encoding a stabilized IAA9 protein significantly represses secondary xylem development in transgenic poplar. We further showed that PtoIAA9 interacts with PtoARF5 homologs via the C-terminal III/IV domains. The truncated PtoARF5.1 protein without the III/IV domains rescued defective phenotypes caused by PtoIAA9m. Expression analysis showed that the PtoIAA9-PtoARF5 module regulated the expression of genes associated with secondary vascular development in PtoIAA9m- and PtoARF5.1-overexpressing plants. Furthermore, PtoARF5.1 could bind to the promoters of two Class III homeodomain-leucine zipper (HD-ZIP III) genes, PtoHB7 and PtoHB8, to modulate secondary xylem formation. Taken together, our results suggest that the Aux/IAA9-ARF5 module is required for auxin signaling to regulate wood formation via orchestrating the expression of HD-ZIP III transcription factors in poplar.
CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees
Forest trees display a perennial growth behavior characterized by a multiple-year delay in flowering and, in temperate regions, an annual cycling between growth and dormancy. We show here that the CO/FT regulatory module, which controls flowering time in response to variations in daylength in annual plants, controls flowering in aspen trees. Unexpectedly, however, it also controls the short-day-induced growth cessation and bud set occurring in the fall. This regulatory mechanism can explain the ecogenetic variation in a highly adaptive trait: the critical daylength for growth cessation displayed by aspen trees sampled across a latitudinal gradient spanning northern Europe.
Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray)
We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in ARABIDOPSIS: Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.
Cellular Timetable of Autumn Senescence
We have studied autumn leaf senescence in a free-growing aspen (Populus tremula) by following changes in pigment, metabolite and nutrient content, photosynthesis, and cell and organelle integrity. The senescence process started on September 11, 2003, apparently initiated solely by the photoperiod, and progressed steadily without any obvious influence of other environmental signals. For example, after this date, senescing leaves accumulated anthocyanins in response to conditions inducing photooxidative stress, but at the beginning of September the leaves did not. Degradation of leaf constituents took place over an 18-d period, and, although the cells in each leaf did not all senesce in parallel, senescence in the tree as a whole was synchronous. Lutein and [beta]-carotene were degraded in parallel with chlorophyll, whereas neoxanthin and the xanthophyll cycle pigments were retained longer. Chloroplasts in each cell were rapidly converted to gerontoplasts and many, although not all, cells died. From September 19, when chlorophyll levels had dropped by 50%, mitochondrial respiration provided the energy for nutrient remobilization. Remobilization seemed to stop on September 29, probably due to the cessation of phloem transport, but, up to abscission of the last leaves (over 1 week later), some cells were metabolically active and had chlorophyll-containing gerontoplasts. About 80% of the nitrogen and phosphorus was remobilized, and on September 29 a sudden change occurred in the [delta]¹⁵N of the cellular content, indicating that volatile compounds may have been released.
AspWood
Trees represent the largest terrestrial carbon sink and a renewable source of ligno-cellulose. There is significant scope for yield and quality improvement in these largely undomesticated species, and efforts to engineer elite varieties will benefit from improved understanding of the transcriptional network underlying cambial growth and wood formation. We generated highspatial- resolution RNA sequencing data spanning the secondary phloem, vascular cambium, and wood-forming tissues of Populus tremula. The transcriptome comprised 28,294 expressed, annotated genes, 78 novel protein-coding genes, and 567 putative long intergenic noncoding RNAs. Most paralogs originating from the Salicaceae whole-genome duplication had diverged expression, with the exception of those highly expressed during secondary cell wall deposition. Coexpression network analyses revealed that regulation of the transcriptome underlying cambial growth and wood formation comprises numerous modules forming a continuum of active processes across the tissues. A comparative analysis revealed that a majority of these modules are conserved in Picea abies. The high spatial resolution of our data enabled identification of novel roles for characterized genes involved in xylan and cellulose biosynthesis, regulators of xylem vessel and fiber differentiation and lignification. An associated web resource (AspWood, http://aspwood.popgenie.org) provides interactive tools for exploring the expression profiles and coexpression network.
Cytokinin signaling regulates cambial development in poplar
Although a substantial proportion of plant biomass originates from the activity of vascular cambium, the molecular basis of radial plant growth is still largely unknown. To address whether cytokinins are required for cambial activity, we studied cytokinin signaling across the cambial zones of 2 tree species, poplar (Populus trichocarpa) and birch (Betula pendula). We observed an expression peak for genes encoding cytokinin receptors in the dividing cambial cells. We reduced cytokinin levels endogenously by engineering transgenic poplar trees (P. tremula x tremuloides) to express a cytokinin catabolic gene, Arabidopsis CYTOKININ OXIDASE 2, under the promoter of a birch CYTOKININ RECEPTOR 1 gene. Transgenic trees showed reduced concentration of a biologically active cytokinin, correlating with impaired cytokinin responsiveness. In these trees, both apical and radial growth was compromised. However, radial growth was more affected, as illustrated by a thinner stem diameter than in WT at same height. To dissect radial from apical growth inhibition, we performed a reciprocal grafting experiment. WT scion outgrew the diameter of transgenic stock, implicating cytokinin activity as a direct determinant of radial growth. The reduced radial growth correlated with a reduced number of cambial cell layers. Moreover, expression of a cytokinin primary response gene was dramatically reduced in the thin-stemmed transgenic trees. Thus, a reduced level of cytokinin signaling is the primary basis for the impaired cambial growth observed. Together, our results show that cytokinins are major hormonal regulators required for cambial development.
Overexpression of bacterial γ‐glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar
Overexpression of bacterial γ‐glutamylcysteine synthetase in the cytosol of Populus tremula × P. alba produces higher glutathione (GSH) concentrations in leaves, thereby indicating the potential for cadmium (Cd) phytoremediation. However, the net Cd²⁺influx in association with H⁺/Ca²⁺, Cd tolerance, and the underlying molecular and physiological mechanisms are uncharacterized in these poplars. We assessed net Cd²⁺influx, Cd tolerance and the transcriptional regulation of several genes involved in Cd²⁺transport and detoxification in wild‐type and transgenic poplars. Poplars exhibited highest net Cd²⁺influxes into roots at pH 5.5 and 0.1 mM Ca²⁺. Transgenics had higher Cd²⁺uptake rates and elevated transcript levels of several genes involved in Cd²⁺transport and detoxification compared with wild‐type poplars. Transgenics exhibited greater Cd accumulation in the aerial parts than wild‐type plants in response to Cd²⁺exposure. Moreover, transgenic poplars had lower concentrations of O₂˙⁻and H₂O₂; higher concentrations of total thiols, GSH and oxidized GSH in roots and/or leaves; and stimulated foliar GSH reductase activity compared with wild‐type plants. These results indicate that transgenics are more tolerant of 100 μM Cd²⁺than wild‐type plants, probably due to the GSH‐mediated induction of the transcription of genes involved in Cd²⁺transport and detoxification.
WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation
WUSCHEL (WUS)-related homeobox (WOX) protein family members play important roles in the maintenance and proliferation of the stem cell niche in the shoot apical meristem (SAM), root apical meristem (RAM), and cambium (CAM). Although the roles of some WOXs in meristematic cell regulation have been well studied in annual plants such as Arabidopsis and rice, the expression and function of WOX members in woody plant poplars has not been systematically investigated. Here, we present the identification and comprehensive analysis of the expression and function of WOXs in Populus tomentosa. A genome-wide survey identified 18 WOX encoding sequences in the sequenced genome of Populus trichocarpa (PtrWOXs). Phylogenetic and gene structure analysis revealed that these 18 PtrWOXs fall into modern/WUS, intermediate, and ancient clades, but that the WOX genes in P. trichocarpa may have expanded differently from the WOX genes in Arabidopsis. In the P. trichocarpa genome, no WOX members could be closely classified as AtWOX3, AtWOX6, AtWOX7, AtWOX10, and AtWOX14, but there were two copies of WOX genes that could be classified as PtrWUS, PtrWOX2, PtrWOX4, PtrWOX5, PtrWOX8/9, and PtrWOX11/12, and three copies of WOX genes that could be classified as PtrWOX1 and PtrWOX13. The use of primers specific for each PtrWOX gene allowed the identification and cloning of 18 WOX genes from P. tomentosa (PtoWOXs), a poplar species physiologically close to P. trichocarpa. It was found that PtoWOXs and PtrWOXs shared very high amino acid sequence identity, and that PtoWOXs could be classified identically to PtrWOXs. We revealed that the expression patterns of some PtoWOXs were different to their Arabidopsis counterparts. When PtoWOX5a and PtoWOX11/12a, as well as PtoWUSa and PtoWOX4a were ectopically expressed in transgenic hybrid poplars, the regeneration of adventitious root (AR) was promoted, indicating a functional similarity of these four WOXs in AR regeneration. This is the first attempt towards a systematical analysis of the function of WOXs in P. tomentosa. A diversified expression, yet functional similarity of PtoWOXs in AR regeneration is revealed. Our findings provide useful information for further elucidation of the functions and mechanisms of WOXs in the development of poplars.
WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees
Plant secondary growth derives from the meristematic activity of the vascular cambium. In Arabidopsis thaliana, cell divisions in the cambium are regulated by the transcription factor WOX4, a key target of the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED 41 (CLE41) signaling pathway. However, function of the WOX4-like genes in plants that are dependent on a much more prolific secondary growth, such as trees, remains unclear. Here, we investigate the role of WOX4 and CLE41 homologs for stem secondary growth in Populus trees. In Populus, PttWOX4 genes are specifically expressed in the cambial region during vegetative growth, but not after growth cessation and during dormancy, possibly involving a regulation by auxin. In PttWOX4a/b RNAi trees, primary growth was not affected whereas the width of the vascular cambium was severely reduced and secondary growth was greatly diminished. Our data show that in Populus trees, PttWOX4 genes control cell division activity in the vascular cambium, and hence growth in stem girth. This activity involves the positive regulation of PttWOX4a/b through PttCLE41-related genes. Finally, expression profiling suggests that the CLE41 signaling pathway is an evolutionarily conserved program for the regulation of vascular cambium activity between angiosperm and gymnosperm tree species.
Brassinosteroid regulation of wood formation in poplar
• Brassinosteroids have been implicated in the differentiation of vascular cell types in herbaceous plants, but their roles during secondary growth and wood formation are not well defined. • Here we pharmacologically and genetically manipulated brassinosteroid levels in poplar trees and assayed the effects on secondary growth and wood formation, and on gene expression within stems. • Elevated brassinosteroid levels resulted in increases in secondary growth and tension wood formation, while inhibition of brassinosteroid synthesis resulted in decreased growth and secondary vascular differentiation. Analysis of gene expression showed that brassinosteroid action is positively associated with genes involved in cell differentiation and cell-wall biosynthesis. • The results presented here show that brassinosteroids play a foundational role in the regulation of secondary growth and wood formation, in part through the regulation of cell differentiation and secondary cell wall biosynthesis.