Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,154
result(s) for
"Potential biomarker"
Sort by:
Role of Blood Biomarkers in Differentiating Ischemic Stroke and Intracerebral Hemorrhage
by
Prasad, Kameshwar
,
Bali, Prerna
,
Padma Srivastava, M
in
Biomarkers
,
Hemorrhage
,
Intracerebral hemorrhage
2020
Background and Purpose: Although imaging is the mainstay to differentiate ischemic stroke (IS) from intracerebral hemorrhage (ICH), these facilities are not available everywhere. The present study observed if any blood biomarker(s) could potentially help differentiate between ischemic stroke and intracerebral hemorrhage.
Methods: 250 patients with acute stroke within 24 hours of onset (187 IS and 63 patients with ICH) were recruited in the present study. The blood samples were collected closest to the hospital presentation time, but within 24 hours of stroke onset. Blood was analyzed for five biomarkers [S100, glial fibrillary acidic protein (GFAP), N-methyl-D-aspartate receptor subunit antibody (NR2), interleukin 6 (IL6) and brain natriuretic peptide (BNP)] to assess discriminatory ability of each biomarker to differentiate ICH and IS.
Results: S100 levels were statistically higher among patients with ICH compared with IS (8 pg/ml versus 4.2 pg/ml respectively, P = 0.003) and IL6 was higher in patients with IS compared with ICH (12.9 pg/ml vs 8.76 pg/ml, P = 0.02). The discriminatory ability to differentiate ICH from IS was better using a combination of the above two biomarkers. The overall discriminatory ability of all biomarkers were low (Area under curve for S100 65%; GFAP 56%; NR2 53%; IL6 59% and BNP 49.8%). Although the positive predictive value of each biomarker was low, the negative predictive value was higher for all biomarkers to diagnose ICH.
Conclusions: S100 and IL6 are potential biomarkers for further study and validation. Newer biomarkers with higher discriminatory ability are required in the future for diagnostic use.
Journal Article
Plasma Metabolic Profile Determination in Young ST-segment Elevation Myocardial Infarction Patients with Ischemia and Reperfusion: Ultra-performance Liquid Chromatography and Mass Spectrometry for Pathway Analysis
by
Lei Huang Tong Li Ying-Wu Liu Lei Zhang Zhi-Huan Dong Shu-Ye Liu Ying-Tang Gao
in
Acids
,
Adolescent
,
Adult
2016
Background: This study was to establish a disease differentiation model for ST-segment elevation myocardial infarction (STEMI) youth patients experiencing ischemia and reperfusion via ultra-performance liquid chromatography and mass spectrometry (UPLC/MS) platform, which searches for closely related characteristic metabolites and metabolic pathways to evaluate their predictive value in the prognosis after discharge. Methods: Forty-seven consecutive STEMI patients (23 patients under 45 years of age, referred to here as "youth," and 24 elderly patients) and 48 healthy control group members (24 youth, 24 elderly) were registered prospectively. The youth patients were required to provide a second blood draw during a follow-up visit one year after morbidity (n - 22, one lost). Characteristic metabolites and relative metabolic pathways were screened via UPLC/MS platform base on the Kyoto encyclopedia of genes and genomes (KEGG) and Human Metabolome Database. Receiver operating characteristic (ROC) curves were drawn to evaluate the predictive value of characteristic metabolites in the prognosis after discharge. Results: We successfully established an orthogonal partial least squares discriminated analysis model (R2X = 71.2%, R2Y = 79.6%, and Q2 55.9%) and screened out 24 ions; the sphingolipid metabolism pathway showed the most drastic change. The ROC curve analysis showed that ceramide [Cer(dl 8:0/16:0), Cer(t 18:0/12:0)] and sphinganine in the sphingolipid pathway have high sensitivity and specificity on the prognosis related to major adverse cardiovascular events after youth patients were discharged. The area under curve (AUC) was 0.67 1, 0.750, and 0.711, respectively. A follow-up validation one year after morbidity showed corresponding AUC of 0.778, 0.833, and 0.806. Conclusions: By analyzing the plasma metabolism of myocardial infarction patients, we successfully established a model that can distinguish two different factors simultaneously: pathological conditions and age. Sphingolipid metabolism is the top most altered pathway in young STEMI patients and as such may represent a valuable prognostic factor and potential therapeutic target.
Journal Article
A map of human circular RNAs in clinically relevant tissues
by
Memczak, Sebastian
,
Rajewsky, Nikolaus
,
Toka, Okan
in
Adenosine
,
Adenosine deaminase
,
Biomarkers
2017
Cellular circular RNAs (circRNAs) are generated by head-to-tail splicing and are present in all multicellular organisms studied so far. Recently, circRNAs have emerged as a large class of RNA which can function as post-transcriptional regulators. It has also been shown that many circRNAs are tissue- and stage-specifically expressed. Moreover, the unusual stability and expression specificity make circRNAs important candidates for clinical biomarker research. Here, we present a circRNA expression resource of 20 human tissues highly relevant to disease-related research: vascular smooth muscle cells (VSMCs), human umbilical vein cells (HUVECs), artery endothelial cells (HUAECs), atrium, vena cava, neutrophils, platelets, cerebral cortex, placenta, and samples from mesenchymal stem cell differentiation. In eight different samples from a single donor, we found highly tissue-specific circRNA expression. Circular-to-linear RNA ratios revealed that many circRNAs were expressed higher than their linear host transcripts. Among the 71 validated circRNAs, we noticed potential biomarkers. In adenosine deaminase-deficient, severe combined immunodeficiency (ADA-SCID) patients and in Wiskott-Aldrich-Syndrome (WAS) patients’ samples, we found evidence for differential circRNA expression of genes that are involved in the molecular pathogenesis of both phenotypes. Our findings underscore the need to assess circRNAs in mechanisms of human disease.
Key messages
circRNA resource catalog of 20 clinically relevant tissues.
circRNA expression is highly tissue-specific.
circRNA transcripts are often more abundant than their linear host RNAs.
circRNAs can be differentially expressed in disease-associated genes.
Journal Article
Urinary metabolomics for discovering metabolic biomarkers of bladder cancer by UPLC-MS
2022
Bladder cancer (BC) is one of the most frequent cancer in the world, and its incidence is rising worldwide, especially in developed countries. Urine metabolomics is a powerful approach to discover potential biomarkers for cancer diagnosis. In this study, we applied an ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) method to profile the metabolites in urine from 29 bladder cancer patients and 15 healthy controls. The differential metabolites were extracted and analyzed by univariate and multivariate analysis methods. Together, 19 metabolites were discovered as differently expressed biomarkers in the two groups, which mainly related to the pathways of phenylacetate metabolism, propanoate metabolism, fatty acid metabolism, pyruvate metabolism, arginine and proline metabolism, glycine and serine metabolism, and bile acid biosynthesis. In addition, a subset of 11 metabolites of those 19 ones were further filtered as potential biomarkers for BC diagnosis by using logistic regression model. The results revealed that the area under the curve (AUC) value, sensitivity and specificity of receiving operator characteristic (ROC) curve were 0.983, 95.3% and 100%, respectively, indicating an excellent discrimination power for BC patients from healthy controls. It was the first time to reveal the potential diagnostic markers of BC by metabolomics, and this will provide a new sight for exploring the biomarkers of the other disease in the future work.
Journal Article
Decoding immune-related gene-signatures in colorectal neoplasia
by
Bemanian, Vahid
,
Sæther, Per Christian
,
Tunsjø, Hege Smith
in
adenomatous polyps
,
Adenomatous Polyps - genetics
,
Adenomatous Polyps - immunology
2024
Colorectal cancer (CRC) is a significant health issue, with notable incidence rates in Norway. The immune response plays a dual role in CRC, offering both protective effects and promoting tumor growth. This research aims to provide a detailed screening of immune-related genes and identify specific genes in CRC and adenomatous polyps within the Norwegian population, potentially serving as detection biomarkers.
The study involved 69 patients (228 biopsies) undergoing colonoscopy, divided into CRC, adenomatous polyps, and control groups. We examined the expression of 579 immune genes through nCounter analysis emphasizing differential expression in tumor versus adjacent non-tumorous tissue and performed quantitative reverse transcription polymerase chain reaction (RT-qPCR) across patient categories.
Key findings include the elevated expression of CXCL1, CXCL2, IL1B, IL6, CXCL8 (IL8), PTGS2, and SPP1 in CRC tissues. Additionally, CXCL1, CXCL2, IL6, CXCL8, and PTGS2 showed significant expression changes in adenomatous polyps, suggesting their early involvement in carcinogenesis.
This study uncovers a distinctive immunological signature in colorectal neoplasia among Norwegians, highlighting CXCL1, CXCL2, IL1B, IL6, CXCL8, PTGS2, and SPP1 as potential CRC biomarkers. These findings warrant further research to confirm their role and explore their utility in non-invasive screening strategies.
Journal Article
Cerebrospinal fluid neurogranin and TREM2 in Huntington’s disease
by
Scahill, Rachael
,
Wild, Edward J.
,
Johnson, Eileanoir B.
in
59/57
,
631/378/1689/1558
,
692/617/375/1558
2018
Biomarkers of Huntington’s disease (HD) in cerebrospinal fluid (CSF) could be of value in elucidating the biology of this genetic neurodegenerative disease, as well as in the development of novel therapeutics. Deranged synaptic and immune function have been reported in HD, and concentrations of the synaptic protein neurogranin and the microglial protein TREM2 are increased in other neurodegenerative diseases. We therefore used ELISAs to quantify neurogranin and TREM2 in CSF samples from HD mutation carriers and controls. CSF neurogranin concentration was not significantly altered in HD compared to controls, nor was it significantly associated with disease burden score, total functional capacity or motor score. An apparent increase in CSF TREM2 in manifest HD was determined to be due to increasing TREM2 with age. After age adjustment, there was no significant alteration of TREM2 in either HD group, nor any association with motor, functional or cognitive score, or brain volume quantified by MRI. Both analyses were well-powered, and sample size calculations indicated that several thousand samples per group would be needed to prove that disease-associated alterations do in fact exist. We conclude that neither neurogranin nor TREM2 is a useful biofluid biomarker for disease processes in Huntington’s disease.
Journal Article
Comprehensive Targeted Metabolomic Study in the Lung, Plasma, and Urine of PPE/LPS-Induced COPD Mice Model
by
Lee, Hyeon-Seong
,
Oh, Songjin
,
Kim, Sung-Hwan
in
Animals
,
Biomarkers - metabolism
,
Chronic obstructive pulmonary disease
2022
(1) Background: Progression of chronic obstructive pulmonary disease (COPD) leads to irreversible lung damage and inflammatory responses; however, biomarker discovery for monitoring of COPD progression remains challenging. (2) Methods: This study evaluated the metabolic mechanisms and potential biomarkers of COPD through the integrated analysis and receiver operating characteristic (ROC) analysis of metabolic changes in lung, plasma, and urine, and changes in morphological characteristics and pulmonary function in a model of PPE/LPS-induced COPD exacerbation. (3) Results: Metabolic changes in the lungs were evaluated as metabolic reprogramming to counteract the changes caused by the onset of COPD. In plasma, several combinations of phenylalanine, 3-methylhistidine, and polyunsaturated fatty acids have been proposed as potential biomarkers; the α-aminobutyric acid/histidine ratio has also been reported, which is a novel candidate biomarker for COPD. In urine, a combination of succinic acid, isocitric acid, and pyruvic acid has been proposed as a potential biomarker. (4) Conclusions: This study proposed potential biomarkers in plasma and urine that reflect altered lung metabolism in COPD, concurrently with the evaluation of the COPD exacerbation model induced by PPE plus LPS administration. Therefore, understanding these integrative mechanisms provides new insights into the diagnosis, treatment, and severity assessment of COPD.
Journal Article
miR-16-5p aggravates sepsis-associated acute kidney injury by inducing apoptosis
by
Duan, Junyan
,
Fu, Yingjie
,
Miao, Hongjun
in
Acute Kidney Injury
,
Acute Kidney Injury - genetics
,
Animals
2024
Sepsis-associated acute kidney injury (S-AKI) is a common disease in pediatric intensive care units (ICU) with high morbidity and mortality. The newly discovered results indicate that microRNAs (miRNAs) play an important role in the diagnosis and treatment of S-AKI and can be used as markers for early diagnosis. In this study, the expression level of miR-16-5p was found to be significantly upregulated about 20-fold in S-AKI patients, and it also increased by 1.9 times in the renal tissue of S-AKI mice. Receiver operating characteristic (ROC) curve analysis showed that miR-16-5p had the highest predictive accuracy in the diagnosis of S-AKI (AUC = 0.9188).
, the expression level of miR-16-5p in HK-2 cells treated with 10 μg/mL lipopolysaccharide (LPS) increased by more than 2 times. In addition, LPS-exposed renal tissue and HK-2 cells lead to upregulation of inflammatory cytokines IL-6, IL-1β, TNF-a, and kidney damage molecules kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL). However, inhibition of miR-16-5p significantly mitigated LPS expose-mediated kidney injury and inflammation. Furthermore, LPS-exposed HK-2 cells increased more than 1.7-fold the expression levels of Bax and caspase-3, decreased 3.2-fold the expression level of B-cell lymphoma-2 (Bcl-2), and significantly promoted the occurrence of apoptosis. MiR-16-5p mimic further increased LPS-induced apoptosis in HK-2 cells. Nevertheless, inhibition of miR-16-5p significantly attenuated this effect. In summary, up-regulation of miR-16-5p expression can significantly aggravate renal injury and apoptosis in S-AKI, which also proves that miR-16-5p can be used as a potential biomarker to promote early identification of S-AKI.
Journal Article
Voltage-gated calcium channels: Novel targets for cancer therapy
2017
Voltage-gated calcium channels (VGCCs) comprise five subtypes: The L-type; R-type; N-type; P/Q-type; and T-type, which are encoded by α1 subunit genes. Calcium ion channels also have confirmed roles in cellular functions, including mitogenesis, proliferation, differentiation, apoptosis and metastasis. An association between VGCCs, a reduction in proliferation and an increase in apoptosis in prostate cancer cells has also been reported. Therefore, in the present study, the online clinical database Oncomine was used to identify the alterations in the mRNA expression level of VGCCs in 19 cancer subtypes. Overall, VGCC family genes exhibited under-expression in numerous types of cancer, including brain, breast, kidney and lung cancers. Notably, the majority of VGCC family members (CACNA1C, CACNA1D, CACNA1A, CACNA1B, CACNA1E, CACNA1H and CACNA1I) exhibited low expression in brain tumors, with mRNA expression levels in the top 1-9% of downregulated gene rankings. A total of 5 VGCC family members (CACNA1A, CACNA1B, CACNA1E, CACNA1G and CACNA1I) were under-expressed in breast cancer, with a gene ranking in the top 1-10% of the low-expressed genes compared with normal tissue. In kidney and lung cancers, CACNA1S, CACNA1C, CACNA1D, CACNA1A and CACNA1H exhibited low expression, with gene rankings in the top 1-8% of downregulated genes. In conclusion, the present findings may contribute to the development of new cancer treatment approaches by identifying target genes involved in specific types of cancer.
Journal Article
Potential Early Markers for Breast Cancer: A Proteomic Approach Comparing Saliva and Serum Samples in a Pilot Study
by
Stanley, Anne E.
,
Sinha, Raghu
,
Sinha, Indu
in
Biomarkers
,
Biomarkers - metabolism
,
Breast cancer
2023
Breast cancer is the second leading cause of death for women in the United States, and early detection could offer patients the opportunity to receive early intervention. The current methods of diagnosis rely on mammograms and have relatively high rates of false positivity, causing anxiety in patients. We sought to identify protein markers in saliva and serum for early detection of breast cancer. A rigorous analysis was performed for individual saliva and serum samples from women without breast disease, and women diagnosed with benign or malignant breast disease, using isobaric tags for relative and absolute quantitation (iTRAQ) technique, and employing a random effects model. A total of 591 and 371 proteins were identified in saliva and serum samples from the same individuals, respectively. The differentially expressed proteins were mainly involved in exocytosis, secretion, immune response, neutrophil-mediated immunity and cytokine-mediated signaling pathway. Using a network biology approach, significantly expressed proteins in both biological fluids were evaluated for protein–protein interaction networks and further analyzed for these being potential biomarkers in breast cancer diagnosis and prognosis. Our systems approach illustrates a feasible platform for investigating the responsive proteomic profile in benign and malignant breast disease using saliva and serum from the same women.
Journal Article