Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3,048 result(s) for "Poultry housing"
Sort by:
The new rules of the roost : organic care & feeding for the family flock
\"[This book] addresses the real problems that crop up when keeping chickens long term ... [and] cover[s] a wide range of topics including organic health remedies and disease prevention, pest management, organic nutrition, the best breeds for specific needs, and the simplest options for daily maintenance and feeding\"--Amazon.com.
Ammonia production in poultry houses can affect health of humans, birds, and the environment—techniques for its reduction during poultry production
Due to greater consumption of poultry products and an increase in exports, more poultry houses will be needed. Therefore, it is important to investigate ways that poultry facilities can coexist in close proximity to residential areas without odors and environmental challenges. Ammonia (NH3) is the greatest concern for environmental pollution from poultry production. When birds consume protein, they produce uric acid, ultimately converted to NH3 under favorable conditions. Factors that increase production include pH, temperature, moisture content, litter type, bird age, manure age, relative humidity, and ventilation rate (VR). NH3 concentration and emissions in poultry houses depend on VR; seasons also have effects on NH3 production. Modern ventilation systems can minimize NH3 in enclosed production spaces quickly but increase its emissions to the environment. NH3 adversely affects the ecosystem, environment, and health of birds and people. Less than 10 ppm is the ideal limit for exposure, but up to 25 ppm is also not harmful. NH3 can be minimized by housing type, aerobic and anaerobic conditions, manure handling practices, litter amendment, and diet manipulation without affecting performance and production. Antibiotics can minimize NH3, but consumers have concerns about health effects. Administration of probiotics seems to be a useful replacement for antibiotics. More studies have been conducted on broilers, necessitating the need to evaluate the effect of probiotics on NH3 production in conjunction with laying hen performance and egg quality. This comprehensive review focuses on research from 1950 to 2018.
Presence of ESBL/AmpC -Producing Escherichia coli in the Broiler Production Pyramid: A Descriptive Study
Broilers and broiler meat products are highly contaminated with extended spectrum beta-lactamase (ESBL) or plasmid-mediated AmpC beta-lactamase producing Escherichia coli and are considered to be a source for human infections. Both horizontal and vertical transmission might play a role in the presence of these strains in broilers. As not much is known about the presence of these strains in the whole production pyramid, the epidemiology of ESBL/AmpC-producing E. coli in the Dutch broiler production pyramid was examined. Cloacal swabs of Grandparent stock (GPS) birds (one-/two-days (breed A and B), 18 and 31 weeks old (breed A)), one-day old Parent stock birds (breed A and B) and broiler chickens of increasing age (breed A) were selectively cultured to detect ESBL/AmpC-producing isolates. ESBL/AmpC-producing isolates were found at all levels in the broiler production pyramid in both broiler breeds examined. Prevalence was already relatively high at the top of the broiler production pyramid. At broiler farms ESBL/AmpC producing E. coli were still present in the environment of the poultry house after cleaning and disinfection. Feed samples taken in the poultry house also became contaminated with ESBL/AmpC producing E. coli after one or more production weeks. The prevalence of ESBL/AmpC-positive birds at broiler farms increased within the first week from 0-24% to 96-100% independent of the use of antibiotics and stayed 100% until slaughter. In GPS breed A, prevalence at 2 days, 18 weeks and 31 weeks stayed below 50% except when beta-lactam antibiotics were administered. In that case prevalence increased to 100%. Interventions minimizing ESBL/AmpC contamination in broilers should focus on preventing horizontal and vertical spread, especially in relation to broiler production farms.
Keel bone fractures in laying hens: a systematic review of prevalence across age, housing systems, and strains
Despite the general consensus regarding the effect of housing system on keel bone fractures (KBF), there is no systematic review of KBF prevalence across housing systems, or hen ages and strains. To address this void, Rufener and Makagon compiled the wealth of existing literature from the past 30 yr with the goals of 1) summarizing published data on KBF prevalence with regard to hen age, strain, and features of the rearing and laying housing system and 2) conducting a meta-analysis to confirm the link between housing systems and KBF prevalence. Here, they present the summarized data and discuss the numerous sources of bias and issues related to the way in which the study details are reported that prohibited them from conducting a meta-analysis.
Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States
The unprecedented 2015 outbreaks of highly pathogenic avian influenza (HPAI) H5N2 in the U.S. devastated its poultry industry and resulted in over $3 billion economic impacts. Today HPAI continues eroding poultry operations and disrupting animal protein supply chains around the world. Anecdotal evidence in 2015 suggested that in some cases the AI virus was aerially introduced into poultry houses, as abnormal bird mortality started near air inlets of the infected houses. This study modeled air movement trajectories and virus concentrations that were used to assess the probability or risk of airborne transmission for the 77 HPAI cases in Iowa. The results show that majority of the positive cases in Iowa might have received airborne virus, carried by fine particulate matter, from infected farms within the state (i.e., intrastate) and infected farms from the neighboring states (i.e., interstate). The modeled airborne virus concentrations at the Iowa recipient sites never exceeded the minimal infective doses for poultry; however, the continuous exposure might have increased airborne infection risks. In the worst-case scenario (i.e., maximum virus shedding rate, highest emission rate, and longest half-life), 33 Iowa cases had > 10% (three cases > 50%) infection probability, indicating a medium to high risk of airborne transmission for these cases. Probability of airborne HPAI infection could be affected by farm type, flock size, and distance to previously infected farms; and more importantly, it can be markedly reduced by swift depopulation and inlet air filtration. The research results provide insights into the risk of airborne transmission of HPAI virus via fine dust particles and the importance of preventative and containment strategies such as air filtration and quick depopulation of infected flocks.
Parents and Early Life Environment Affect Behavioral Development of Laying Hen Chickens
Severe feather pecking (SFP) in commercial laying hens is a maladaptive behavior which is associated with anxiety traits. Many experimental studies have shown that stress in the parents can affect anxiety in the offspring, but until now these effects have been neglected in addressing the problem of SFP in commercially kept laying hens. We therefore studied whether parental stock (PS) affected the development of SFP and anxiety in their offspring. We used flocks from a brown and white genetic hybrid because genetic background can affect SFP and anxiety. As SFP can also be influenced by housing conditions on the rearing farm, we included effects of housing system and litter availability in the analysis. Forty-seven rearing flocks, originating from ten PS flocks were followed. Behavioral and physiological parameters related to anxiety and SFP were studied in the PS at 40 weeks of age and in the rearing flocks at one, five, ten and fifteen weeks of age. We found that PS had an effect on SFP at one week of age and on anxiety at one and five weeks of age. In the white hybrid, but not in the brown hybrid, high levels of maternal corticosterone, maternal feather damage and maternal whole-blood serotonin levels showed positive relations with offsprings' SFP at one week and offsprings' anxiety at one and five weeks of age. Disruption and limitation of litter supply at an early age on the rearing farms increased SFP, feather damage and fearfulness. These effects were most prominent in the brown hybrid. It appeared that hens from a brown hybrid are more affected by environmental conditions, while hens from a white hybrid were more strongly affected by parental effects. These results are important for designing measures to prevent the development of SFP, which may require a different approach in brown and white flocks.
Animal welfare with Chinese characteristics: Chinese poultry producers’ perceptions of, and attitudes towards, animal welfare
China’s poultry industry faces challenges in adopting and sustaining cage-free systems for poultry production. Effective interventions are crucial to support producers transitioning from cages to alternative systems or maintaining cage-free systems to improve animal welfare. However, little is known about how Chinese poultry producers perceive animal welfare in relation to cage-free systems and the importance of animal welfare in poultry production. Through a qualitative interview study with 30 Chinese farm owners, managers and senior managers from large-scale egg and broiler farms using cages and non-cage systems (collectively referred to as “producers”), this paper explores Chinese poultry producers’ attitudes and perceptions regarding animal welfare and welfare in different poultry housing systems. Template analysis was used to analyse the data from semi-structured interviews, which generated themes related to the participants’ awareness and understanding of the concept of animal welfare, the factors that impacted their choices of different housing systems, and the perceived priorities in poultry production. The responses revealed that the participating producers had a strong awareness and knowledge of animal welfare. However, the participants’ understanding of the term is heterogeneous: generally, egg producers emphasised natural behaviours, whereas broiler producers prioritised health and productivity. Nevertheless, profitability, leadership, and organisational policies primarily influenced housing system choices rather than animal welfare values. Economic motives drove egg producers towards cage-free systems, prompted by consumers’ and companies’ demand for cage-free eggs committed to transitioning away from cages by 2025. In conclusion, tailored interventions for different poultry sectors within China are necessary. While animal welfare values matter, economic incentives seem more promising for steering the shift towards and maintaining cage-free poultry production.
Rapid growth rate results in remarkably hardened breast in broilers during the middle stage of rearing: A biochemical and histopathological study
The high incidence of meat of impaired quality poses a serious problem in the poultry industry. In recent years, the incidence of the pectoralis major muscle that appeared pale colored, remarkably hardened, and exudative, called \"wooden breast\" or \"woody breast\" has increased in slaughter houses. In the present study, 19-day-old Ross 308 broiler chickens affected (n = 10) and unaffected (n = 10) with remarkably hardened breast were selected from a commercial broiler farm, and reared to 55 days of age under a controlled environment. Among the affected birds, 5 of 10 birds appeared exhausted with markedly suppressed weight gain and 4 of 10 birds died during the rearing period. In contrast, all unaffected birds survived and most gained weight. Four of 10 unaffected birds lost the ability of back-to-back wing contact by the late stage of rearing. The biochemical analysis of blood plasma samples of 20-day-old birds revealed that creatine kinase and L-aspartate aminotransferase values in most affected birds were higher than those in unaffected birds; however, these values in unaffected birds increased rapidly with lost wing contactability and increasing age. Postmortem examinations revealed that the mean diameter of myofibers in affected birds was smaller than that in unaffected birds. Moreover, symptoms of degenerative and regenerative muscles were observed in most birds in both groups. Among them, a decrease in, or defect of, the characteristic polygonal shape of myofibers was the most common change within the pectoralis major muscles in both groups. The present study demonstrated that broilers affected with remarkably hardened breast during the middle stage of rearing would have suppressed physical status and weight gain, or would die. It was suggested that rapid growth in broilers might be a cause of remarkably hardened breast.
A Machine Vision-Based Method for Monitoring Broiler Chicken Floor Distribution
The proper spatial distribution of chickens is an indication of a healthy flock. Routine inspections of broiler chicken floor distribution are done manually in commercial grow-out houses every day, which is labor intensive and time consuming. This task requires an efficient and automatic system that can monitor the chicken’s floor distributions. In the current study, a machine vision-based method was developed and tested in an experimental broiler house. For the new method to recognize bird distribution in the images, the pen floor was virtually defined/divided into drinking, feeding, and rest/exercise zones. As broiler chickens grew, the images collected each day were analyzed separately to avoid biases caused by changes of body weight/size over time. About 7000 chicken areas/profiles were extracted from images collected from 18 to 35 days of age to build a BP neural network model for floor distribution analysis, and another 200 images were used to validate the model. The results showed that the identification accuracies of bird distribution in the drinking and feeding zones were 0.9419 and 0.9544, respectively. The correlation coefficient (R), mean square error (MSE), and mean absolute error (MAE) of the BP model were 0.996, 0.038, and 0.178, respectively, in our analysis of broiler distribution. Missed detections were mainly caused by interference with the equipment (e.g., the feeder hanging chain and water line); studies are ongoing to address these issues. This study provides the basis for devising a real-time evaluation tool to detect broiler chicken floor distribution and behavior in commercial facilities.
Village and farm-level risk factors for avian influenza infection on backyard chicken farms in Bangladesh
A cross-sectional study was conducted with 144 small-scale poultry farmers across 42 Bangladeshi villages to explore risk factors associated with avian influenza H5 and H9 seropositivity on backyard chicken farms. Using mixed-effects logistic regression with village as random effect, we identified crow abundance in garbage dumping places and presence of migratory wild birds within villages to be associated with higher odds of H5 and H9 seropositivity. At farm-level, garbage around poultry houses was also associated with higher odds of H5 and H9 seropositivity. In addition, specific trading practices (such as, purchase of chickens from live bird markets (LBM) and neighboring farms to raise them on their own farms, frequency of visits to LBM, purchase of poultry at LBM for consumption) and contact of backyard chickens with other animals (such as, feeding of different poultry species together, using pond water as drinking source for poultry, access of feral and wild animals to poultry houses) were associated with higher odds of H5 or H9 seropositivity. Resource-constrained small-scale poultry farmers should be able to address risk factors identified in this study without requiring large investments into poultry management, thereby reducing the likelihood of avian influenza virus transmission and ultimately occurrence of avian influenza outbreaks.