Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
25
result(s) for
"Power-to-Liquid"
Sort by:
Future Fuels—Analyses of the Future Prospects of Renewable Synthetic Fuels
by
Riedel, Uwe
,
Monnerie, Nathalie
,
Feinauer, Mario
in
Alternative energy sources
,
Aviation
,
aviation fuel
2020
The Future Fuels project combines research in several institutes of the German Aerospace Center (DLR) on the production and use of synthetic fuels for space, energy, transportation, and aviation. This article gives an overview of the research questions considered and results achieved so far and also provides insight into the multidimensional and interdisciplinary project approach. Various methods and models were used which are embedded in the research context and based on established approaches. The prospects for large-scale fuel production using renewable electricity and solar radiation played a key role in the project. Empirical and model-based investigations of the technological and cost-related aspects were supplemented by modelling of the integration into a future electricity system. The composition, properties, and the related performance and emissions of synthetic fuels play an important role both for potential oxygenated drop-in fuels in road transport and for the design and certification of alternative aviation fuels. In addition, possible green synthetic fuels as an alternative to highly toxic hydrazine were investigated with different tools and experiments using combustion chambers. The results provide new answers to many research questions. The experiences with the interdisciplinary approach of Future Fuels are relevant for the further development of research topics and co-operations in this field.
Journal Article
E-Fuels: A Comprehensive Review of the Most Promising Technological Alternatives towards an Energy Transition
2024
E-fuels represent a crucial technology for transitioning to fossil-free energy systems, driven by the need to eliminate dependence on fossil fuels, which are major environmental pollutants. This study investigates the production of carbon-neutral synthetic fuels, focusing on e-hydrogen (e-H2) generated from water electrolysis using renewable electricity and carbon dioxide (CO2) captured from industrial sites or the air (CCUS, DAC). E-H2 can be converted into various e-fuels (e-methane, e-methanol, e-DME/OME, e-diesel/kerosene/gasoline) or combined with nitrogen to produce e-ammonia. These e-fuels serve as efficient energy carriers that can be stored, transported, and utilized across different energy sectors, including transportation and industry. The first objective is to establish a clear framework encompassing the required feedstocks and production technologies, such as water electrolysis, carbon capture, and nitrogen production techniques, followed by an analysis of e-fuel synthesis technologies. The second objective is to evaluate these technologies’ technological maturity and sustainability, comparing energy conversion efficiency and greenhouse gas emissions with their electric counterparts. The sustainability of e-fuels hinges on using renewable electricity. Challenges and future prospects of an energy system based on e-fuels are discussed, aiming to inform the debate on e-fuels’ role in reducing fossil fuel dependency.
Journal Article
Fischer–Tropsch Synthesis as the Key for Decentralized Sustainable Kerosene Production
2021
Synthetic fuels play an important role in the defossilization of future aviation transport. To reduce the ecological impact of remote airports due to the long-range transportation of kerosene, decentralized on-site production of synthetic paraffinic kerosene is applicable, preferably as a near-drop-in fuel or, alternatively, as a blend. One possible solution for such a production of synthetic kerosene is the power-to-liquid process. We describe the basic development of a simplified plant layout addressing the specific challenges of decentralized kerosene production that differs from most of the current approaches for infrastructural well-connected regions. The decisive influence of the Fischer–Tropsch synthesis on the power-to-liquid (PtL) process is shown by means of a steady-state reactor model, which was developed in Python and serves as a basis for the further development of a modular environment able to represent entire process chains. The reactor model is based on reaction kinetics according to the current literature. The effects of adjustments of the main operation parameters on the reactor behavior were evaluated, and the impacts on the up- and downstream processes are described. The results prove the governing influence of the Fischer–Tropsch reactor on the PtL process and show its flexibility regarding the desired product fraction output, which makes it an appropriate solution for decentralized kerosene production.
Journal Article
An Overview of Promising Alternative Fuels for Road, Rail, Air, and Inland Waterway Transport in Germany
2022
To solve the challenge of decarbonizing the transport sector, a broad variety of alternative fuels based on different concepts, including Power-to-Gas and Power-to-Liquid, and propulsion systems, have been developed. The current research landscape is investigating either a selection of fuel options or a selection of criteria, a comprehensive overview is missing so far. This study aims to close this gap by providing a holistic analysis of existing fuel and drivetrain options, spanning production to utilization. For this purpose, a case study for Germany is performed considering different vehicle classes in road, rail, inland waterway, and air transport. The evaluated criteria on the production side include technical maturity, costs, as well as environmental impacts, whereas, on the utilization side, possible blending with existing fossil fuels and the satisfaction of the required mission ranges are evaluated. Overall, the fuels and propulsion systems, Methanol-to-Gasoline, Fischer–Tropsch diesel and kerosene, hydrogen, battery-electric propulsion, HVO, DME, and natural gas are identified as promising future options. All of these promising fuels could reach near-zero greenhouse gas emissions bounded to some mandatory preconditions. However, the current research landscape is characterized by high insecurity with regard to fuel costs, depending on the predicted range and length of value chains.
Journal Article
An Overview of Major Synthetic Fuels
by
Ram, Vishal
,
Salkuti, Surender Reddy
in
Alternative energy sources
,
biofuels
,
bottlenecks of synthetic fuels
2023
Artificial fuels have been researched for more than a decade now in an attempt to find alternative sources of energy. With global climatic conditions rapidly approaching the end of their safe line, an emphasis on escalating the change has been seen in recent times. Synthetic fuels are a diverse group of compounds that can be used as replacements for traditional fuels, such as gasoline and diesel. This paper provides a comprehensive review of synthetic fuels, with a focus on their classification and production processes. The article begins with an in-depth introduction, followed by virtually classifying the major synthetic fuels that are currently produced on an industrial scale. The article further discusses their feedstocks and production processes, along with detailed equations and diagrams to help readers understand the basic science behind synthetic fuels. The environmental impact of these fuels is also explored, along with their respective key players in the industry. By highlighting the benefits and drawbacks of synthetic fuels, this study also aims to facilitate an informed discussion about the future of energy and the role that synthetic fuels may play in reducing our reliance on fossil fuels.
Journal Article
Analysis of the Potential of Meeting the EU’s Sustainable Aviation Fuel Targets in 2030 and 2050
by
Zondervan, Edwin
,
Moshammer, Kai
,
Shehab, Moaaz
in
Aeronautics
,
Air quality management
,
Air travel
2023
Sustainable aviation fuel (SAF) is anticipated to have a significant impact on decarbonizing the aviation industry owing to its ability to be seamlessly incorporated into the current aviation infrastructure. This paper analyzes the potential of meeting the proposed SAF targets set by the ReFuelEU initiative. The approved SAF production pathways according to ASTM D7566 using renewable bio-based feedstocks were defined and analyzed. Moreover, a detailed matrix for comparison was used to provide an overview of the current state of those pathways. The analysis has shown that hydroprocessed esters of fatty acids (HEFA), alcohol to jet (ATJ), and Fischer–Tropsch (FT-SPK) are the most promising pathways in the foreseeable future due to their high technology readiness and fuel levels. HEFA is the most mature and affordable pathway; therefore, it is expected to form the backbone of the industry and stimulate the market in the short term despite its low sustainability credentials, limited feedstock, and geopolitical implications. On the other hand, FT-SPK can utilize various feedstocks and has the lowest greenhouse gas emissions with around 7.7 to 12.2 gCO2e/MJ compared to the conventional jet fuel baseline of 89 gCO2e/MJ. Overall, the EU has enough sustainable feedstocks to meet the short-term SAF targets using the current technologies. In the long term, the reliability and availability of biomass feedstocks are expected to diminish, leading to a projected deficit of 1.35 Mt in SAF production from bio-based feedstocks. Consequently, a further policy framework is needed to divert more biomass from other sectors toward SAF production. Moreover, a significant investment in R&D is necessary to improve process efficiencies and push new technologies such as power-to-liquid toward commercial operation.
Journal Article
Downsizing Sustainable Aviation Fuel Production with Additive Manufacturing—An Experimental Study on a 3D printed Reactor for Fischer-Tropsch Synthesis
by
Klahn, Christoph
,
Dittmeyer, Roland
,
Metzger, David F.
in
Additive manufacturing
,
Aviation
,
Carbon
2023
Sustainable aviation fuels (SAF) are needed in large quantities to reduce the negative impact of flying on the climate. So-called power-to-liquid (PtL) plants can produce SAF from renewable electricity, water, and carbon dioxide. Reactors for these processes that are suitable for flexible operation are difficult to manufacture. Metal 3D printing, also known as additive manufacturing (AM), enables the fabrication of process equipment, such as chemical reactors, with highly optimized functions. In this publication, we present an AM reactor design and conduct experiments for Fischer-Tropsch synthesis (FTS) under challenging conditions. The design includes heating, cooling, and sensing, among others, and can be easily fabricated without welding. We confirm that our reactor has excellent temperature control and high productivity of FTS products up to 800 kgC5+ mcat−3 h−1 (mass flow rate of hydrocarbons, liquid or solid at ambient conditions, per catalyst volume). The typical space-time yield for conventional multi-tubular Fischer-Tropsch reactors is ~100 kgC5+ mcat−3 h−1. The increased productivity is achieved by designing reactor structures in which the channels for catalyst and cooling/heating fluid are in the millimeter range. With the effective control of heat release, we observe neither the formation of hot spots nor catalyst deactivation.
Journal Article
Life-Cycle Assessment of Power-to-Liquid Kerosene Produced from Renewable Electricity and CO2 from Direct Air Capture in Germany
by
Micheli, Matteo
,
Bach, Vanessa
,
Finkbeiner, Matthias
in
Aviation fuel
,
Carbon dioxide
,
Climate change
2022
Decarbonization of the aviation sector is crucial to reaching the global climate targets. We quantified the environmental impacts of Power-to-Liquid kerosene produced via Fischer-Tropsch Synthesis from electricity and carbon dioxide from air as one broadly discussed alternative liquid jet fuel. We applied a life-cycle assessment considering a well-to-wake boundary for five impact categories including climate change and two inventory indicators. Three different electricity production mixes and four different kerosene production pathways in Germany were analyzed, including two Direct Air Capture technologies, and compared to fossil jet fuel. The environmental impacts of Power-to-Liquid kerosene varied significantly across the production pathways. E.g., when electricity from wind power was used, the reduction in CO2-eq. compared to fossil jet fuel varied between 27.6–46.2% (with non-CO2 effects) and between 52.6–88.9% (without non-CO2 effects). The reduction potential regarding CO2-eq. of the layout using low-temperature electrolysis and high-temperature Direct Air Capture was lower compared to the high-temperature electrolysis and low-temperature Direct Air Capture. Overall, the layout causing the lowest environmental impacts uses high-temperature electrolysis, low-temperature Direct Air Capture and electricity from wind power. This paper showed that PtL-kerosene produced with renewable energy could play an important role in decarbonizing the aviation sector.
Journal Article
Recent Advancements in Applying Machine Learning in Power-to-X Processes: A Literature Review
by
Ghaani, Mohammad Reza
,
Shojaei, Seyed Mohammad
,
Aghamolaei, Reihaneh
in
Alternative energy sources
,
Bibliometrics
,
Energy resources
2024
For decades, fossil fuels have been the backbone of reliable energy systems, offering unmatched energy density and flexibility. However, as the world shifts toward renewable energy, overcoming the limitations of intermittent power sources requires a bold reimagining of energy storage and integration. Power-to-X (PtX) technologies, which convert excess renewable electricity into storable energy carriers, offer a promising solution for long-term energy storage and sector coupling. Recent advancements in machine learning (ML) have revolutionized PtX systems by enhancing efficiency, scalability, and sustainability. This review provides a detailed analysis of how ML techniques, such as deep reinforcement learning, data-driven optimization, and predictive diagnostics, are driving innovation in Power-to-Gas (PtG), Power-to-Liquid (PtL), and Power-to-Heat (PtH) systems. For example, deep reinforcement learning has improved real-time decision-making in PtG systems, reducing operational costs and improving grid stability. Additionally, predictive diagnostics powered by ML have increased system reliability by identifying early failures in critical components such as proton exchange membrane fuel cells (PEMFCs). Despite these advancements, challenges such as data quality, real-time processing, and scalability remain, presenting future research opportunities. These advancements are critical to decarbonizing hard-to-electrify sectors, such as heavy industry, transportation, and aviation, aligning with global sustainability goals.
Journal Article
Uncovering the dynamics in global carbon dioxide utilization research: a bibliometric analysis (1995–2019)
by
Lee, Chew Tin
,
Wong, Syie Luing
,
Nordin, Abu Hassan
in
Anthropogenic factors
,
Aquatic Pollution
,
Atmosphere
2021
The anthropogenic emission of carbon dioxide (CO
2
) into the atmosphere is recognized as the main contributor to global climate change. To date, scientists have developed various strategies, including CO
2
utilization technologies, to reduce global carbon emissions. This paper presents the global scientific landscape of the CO
2
utilization research from 1995 to 2019 based on a bibliometric analysis of 1875 publications extracted from Web of Science. The findings indicate a major increase in the number of publications and citations received from 2015 to 2019, denoting a fast-emerging research trend. The dynamics of global CO
2
utilization research is partly driven by China’s policies and research funding to promote low-carbon economic development.
Applied Energy
is recognized as a core journal in this research topic. The utilization of CO
2
is a multidisciplinary topic that has progressed by multidimensional collaborations at the country and organizations levels, while the formation of co-authorship networks at the individual level is mostly influenced by the authors’ affiliations. Keyword co-occurrence analysis reveals a rapid evolution in the CO
2
utilization strategies from chemical fixation in carbonates and epoxides to pilot-scale testing of power-to-gas technologies in Europe and the USA. The development of efficient power-to-fuel technologies and biological utilization routes (using microalgae and bacteria) will probably be the next research priorities in CO
2
utilization research.
Journal Article