Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,483
result(s) for
"Precipitation intensity"
Sort by:
CNN vs. LSTM: A Comparative Study of Hourly Precipitation Intensity Prediction as a Key Factor in Flood Forecasting Frameworks
by
Ebtehaj, Isa
,
Bonakdari, Hossein
in
Artificial neural networks
,
Cartier, Jacques (1491-1557)
,
Comparative analysis
2024
Accurate precipitation intensity forecasting is crucial for effective flood management and early warning systems. This study evaluates the performances of convolutional neural network (CNN) and long short-term memory (LSTM) models in predicting hourly precipitation intensity using data from Sainte Catherine de la Jacques Cartier station near Québec City. The models predict precipitation levels from one to six hours ahead, which are categorized into slight, moderate, heavy, and very heavy precipitation intensities. Our methodology involved gathering hourly precipitation data, defining input combinations for multistep ahead forecasting, and employing CNN and LSTM models. The performances of these models were assessed through qualitative and quantitative evaluations. The key findings reveal that the LSTM model excelled in the short-term (1HA to 2HA) and long-term (3HA to 6HA) forecasting, with higher R2 (up to 0.999) and NSE values (up to 0.999), while the CNN model was more computationally efficient, with lower AICc values (e.g., −16,041.1 for 1HA). The error analysis shows that the CNN demonstrated higher precision in the heavy and very heavy categories, with a lower relative error, whereas the LSTM performed better for the slight and moderate categories. The LSTM outperformed the CNN in minor- and high-intensity events, but the CNN exhibited a better performance for significant precipitation events with shorter lead times. Overall, both models were adequate, with the LSTM providing better accuracy for extended forecasts and the CNN offering efficiency for immediate predictions, highlighting their complementary roles in enhancing early warning systems and flood management strategies.
Journal Article
Precipitation Intensity Trend Detection using Hourly and Daily Observations in Portland, Oregon
by
Cooley, Alexis
,
Chang, Heejun
in
Atmospheric precipitations
,
Autocorrelation
,
Change detection
2017
The intensity of precipitation is expected to increase in response to climate change, but the regions where this may occur are unclear. The lack of certainty from climate models warrants an examination of trends in observational records. However, the temporal resolution of records may affect the success of trend detection. Daily observations are often used, but may be too coarse to detect changes. Sub-daily records may improve detection, but their value is not yet quantified. Using daily and hourly records from 24 rain gages in Portland, Oregon (OR), trends in precipitation intensity and volume are examined for the period of 1999–2015. Daily intensity is measured using the Simple Daily Intensity Index, and this method is adapted to measure hourly scale intensity. Kendall’s tau, a non-parametric correlation coefficient, is used for monotonic trend detection. Field significance and tests for spatial autocorrelation using Moran’s Index are used to determine the significance of group hypothesis tests. Results indicate that the hourly data is superior in trend detection when compared with daily data; more trends are detected with hourly scale data at both the 5% and 10% significance levels. Hourly records showed a significant increase in 6 of 12 months, while daily records showed a significant increase in 4 of 12 months at the 10% significance level. At both scales increasing trends were concentrated in spring and summer months, while no winter trends were detected. Volume was shown to be increasing in most months experiencing increased intensity, and is a probable driver of the intensity trends observed.
Journal Article
Global distribution of the intensity and frequency of hourly precipitation and their responses to ENSO
by
Fowler, Hayley J
,
Barbero Renaud
,
Villalobos Herrera Roberto
in
Atmospheric precipitations
,
Daily precipitation
,
Distribution
2020
We investigate the global distribution of hourly precipitation and its connections with the El Niño–Southern Oscillation (ENSO) using both satellite precipitation estimates and the global sub-daily rainfall gauge dataset. Despite limited moisture availability over continental surfaces, we find that the highest mean and extreme hourly precipitation intensity (HPI) values are mainly located over continents rather than over oceans, a feature that is not evident in daily or coarser resolution data. After decomposing the total precipitation into the product of the number of wet hours (NWH) and HPI, we find that ENSO modulates total precipitation mainly through the NWH, while its effects on HPI are more limited. The contrasting responses to ENSO in NWH and HPI is particularly apparent at the rising branches of the Pacific and Atlantic Walker Circulations, and is also notable over land-based gauges in Australia, Malaysia, the USA, Japan and Europe across the whole distribution of hourly precipitation (i.e. extreme, moderate and light precipitation). These results provide new insights into the global precipitation distribution and its response to ENSO forcing.
Journal Article
RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting
by
Ayzel, Georgy
,
Scheffer, Tobias
,
Heistermann, Maik
in
Artificial neural networks
,
Atmospheric precipitations
,
Benchmarks
2020
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting. Its design was inspired by the U-Net and SegNet families of deep learning models, which were originally designed for binary segmentation tasks. RainNet was trained to predict continuous precipitation intensities at a lead time of 5 min, using several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of 900km×900 km and has a resolution of 1 km in space and 5 min in time. Independent verification experiments were carried out on 11 summer precipitation events from 2016 to 2017. In order to achieve a lead time of 1 h, a recursive approach was implemented by using RainNet predictions at 5 min lead times as model inputs for longer lead times. In the verification experiments, trivial Eulerian persistence and a conventional model based on optical flow served as benchmarks. The latter is available in the rainymotion library and had previously been shown to outperform DWD's operational nowcasting model for the same set of verification events.RainNet significantly outperforms the benchmark models at all lead times up to 60 min for the routine verification metrics mean absolute error (MAE) and the critical success index (CSI) at intensity thresholds of 0.125, 1, and 5 mmh-1. However, rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15 mmh-1). The limited ability of RainNet to predict heavy rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing introduced by the model. At a lead time of 5 min, an analysis of power spectral density confirmed a significant loss of spectral power at length scales of 16 km and below. Obviously, RainNet had learned an optimal level of smoothing to produce a nowcast at 5 min lead time. In that sense, the loss of spectral power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of 5 min, however, the increasing level of smoothing is a mere artifact – an analogue to numerical diffusion – that is not a property of RainNet itself but of its recursive application. In the context of early warning, the smoothing is particularly unfavorable since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to address this issue in prospective research, including an adjustment of the loss function for model training, model training for longer lead times, and the prediction of threshold exceedance in terms of a binary segmentation task. Furthermore, we suggest additional input data that could help to better identify situations with imminent precipitation dynamics. The model code, pretrained weights, and training data are provided in open repositories as an input for such future studies.
Journal Article
Why Do Precipitation Intensities Tend to Follow Gamma Distributions?
by
Martinez-Villalobos, Cristian
,
Neelin, J. David
in
Climate
,
Climate change
,
Climatic conditions
2019
The probability distribution of daily precipitation intensities, especially the probability of extremes, impacts a wide range of applications. In most regions this distribution decays slowly with size at first, approximately as a power law with an exponent between 0 and −1, and then more sharply, for values larger than a characteristic cutoff scale. This cutoff is important because it limits the probability of extreme daily precipitation occurrences in current climate. There is a long history of representing daily precipitation using a gamma distribution—here we present theory for how daily precipitation distributions get their shape. Processes shaping daily precipitation distributions can be separated into nonprecipitating and precipitating regime effects, the former partially controlling how many times in a day it rains, and the latter set by single-storm accumulations. Using previously developed theory for precipitation accumulation distributions—which follow a sharper power-law range (exponent < −1) with a physically derived cutoff for large sizes—analytical expressions for daily precipitation distribution power-law exponent and cutoff are calculated as a function of key physical parameters. Precipitating and nonprecipitating regime processes both contribute to reducing the power-law range exponent for the daily precipitation distribution relative to the fundamental exponent set by accumulations. The daily precipitation distribution cutoff is set by the precipitating regime and scales with moisture availability, with important consequences for future distribution shifts under global warming. Similar results extend to different averaging periods, providing insight into how the precipitation intensity distribution evolves as a function of both underlying physical climate conditions and averaging time.
Journal Article
The response of precipitation characteristics to global warming from climate projections
by
Coppola, Erika
,
Giorgi, Filippo
,
Raffaele, Francesca
in
Air pollution
,
Annual variations
,
Climate
2019
We revisit the issue of the response of precipitation characteristics to global warming based on analyses of global and regional climate model projections for the 21st century. The prevailing response we identify can be summarized as follows: increase in the intensity of precipitation events and extremes, with the occurrence of events of “unprecedented” magnitude, i.e., a magnitude not found in the present-day climate; decrease in the number of light precipitation events and in wet spell lengths; and increase in the number of dry days and dry spell lengths. This response, which is mostly consistent across the models we analyzed, is tied to the difference between precipitation intensity responding to increases in local humidity conditions and circulations, especially for heavy and extreme events, and mean precipitation responding to slower increases in global evaporation. These changes in hydroclimatic characteristics have multiple and important impacts on the Earth's hydrologic cycle and on a variety of sectors. As examples we investigate effects on potential stress due to increases in dry and wet extremes, changes in precipitation interannual variability, and changes in the potential predictability of precipitation events. We also stress how the understanding of the hydroclimatic response to global warming can provide important insights into the fundamental behavior of precipitation processes, most noticeably tropical convection.
Journal Article
Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective
2018
Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius–Clapeyron (CC) rate of 6–7%/°C–1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.
Journal Article
The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation
2018
The new Version 2.3 of the Global Precipitation Climatology Project (GPCP) Monthly analysis is described in terms of changes made to improve the homogeneity of the product, especially after 2002. These changes include corrections to cross-calibration of satellite data inputs and updates to the gauge analysis. Over-ocean changes starting in 2003 resulted in an overall precipitation increase of 1.8% after 2009. Updating the gauge analysis to its final, high-quality version increases the global land total by 1.8% for the post-2002 period. These changes correct a small, incorrect dip in the estimated global precipitation over the last decade given by the earlier Version 2.2. The GPCP analysis is also used to describe global precipitation in 2017. The general La Niña pattern for 2017 is noted and the evolution from the early 2016 El Niño pattern is described. The 2017 global value is one of the highest for the 1979–2017 period, exceeded only by 2016 and 1998 (both El Niño years), and reinforces the small positive trend. Results for 2017 also reinforce significant trends in precipitation intensity (on a monthly scale) in the tropics. These results for 2017 indicate the value of the GPCP analysis, in addition to research, for climate monitoring.
Journal Article
Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile
by
Verbist, Koen
,
Nauditt, Alexandra
,
Zambrano-Bigiarini, Mauricio
in
Accuracy
,
Analysis
,
Arid regions
2017
Accurate representation of the real spatio-temporal variability of catchment rainfall inputs is currently severely limited. Moreover, spatially interpolated catchment precipitation is subject to large uncertainties, particularly in developing countries and regions which are difficult to access. Recently, satellite-based rainfall estimates (SREs) provide an unprecedented opportunity for a wide range of hydrological applications, from water resources modelling to monitoring of extreme events such as droughts and floods.This study attempts to exhaustively evaluate – for the first time – the suitability of seven state-of-the-art SRE products (TMPA 3B42v7, CHIRPSv2, CMORPH, PERSIANN-CDR, PERSIAN-CCS-Adj, MSWEPv1.1, and PGFv3) over the complex topography and diverse climatic gradients of Chile. Different temporal scales (daily, monthly, seasonal, annual) are used in a point-to-pixel comparison between precipitation time series measured at 366 stations (from sea level to 4600 m a.s.l. in the Andean Plateau) and the corresponding grid cell of each SRE (rescaled to a 0.25° grid if necessary). The modified Kling–Gupta efficiency was used to identify possible sources of systematic errors in each SRE. In addition, five categorical indices (PC, POD, FAR, ETS, fBIAS) were used to assess the ability of each SRE to correctly identify different precipitation intensities.Results revealed that most SRE products performed better for the humid South (36.4–43.7° S) and Central Chile (32.18–36.4° S), in particular at low- and mid-elevation zones (0–1000 m a.s.l.) compared to the arid northern regions and the Far South. Seasonally, all products performed best during the wet seasons (autumn and winter; MAM–JJA) compared to summer (DJF) and spring (SON). In addition, all SREs were able to correctly identify the occurrence of no-rain events, but they presented a low skill in classifying precipitation intensities during rainy days. Overall, PGFv3 exhibited the best performance everywhere and for all timescales, which can be clearly attributed to its bias-correction procedure using 217 stations from Chile. Good results were also obtained by the research products CHIRPSv2, TMPA 3B42v7 and MSWEPv1.1, while CMORPH, PERSIANN-CDR, and the real-time PERSIANN-CCS-Adj were less skillful in representing observed rainfall. While PGFv3 (currently available up to 2010) might be used in Chile for historical analyses and calibration of hydrological models, the high spatial resolution, low latency and long data records of CHIRPS and TMPA 3B42v7 (in transition to IMERG) show promising potential to be used in meteorological studies and water resource assessments. We finally conclude that despite improvements of most SRE products, a site-specific assessment is still needed before any use in catchment-scale hydrological studies.
Journal Article
A Review of High Impact Weather for Aviation Meteorology
by
Yum, Seong S
,
Hui-ya Chuang
,
Albquerque Neto, F L
in
Aerodynamics
,
Airports
,
Anthropogenic factors
2019
This review paper summarizes current knowledge available for aviation operations related to meteorology and provides suggestions for necessary improvements in the measurement and prediction of weather-related parameters, new physical methods for numerical weather predictions (NWP), and next-generation integrated systems. Severe weather can disrupt aviation operations on the ground or in-flight. The most important parameters related to aviation meteorology are wind and turbulence, fog visibility, aerosol/ash loading, ceiling, rain and snow amount and rates, icing, ice microphysical parameters, convection and precipitation intensity, microbursts, hail, and lightning. Measurements of these parameters are functions of sensor response times and measurement thresholds in extreme weather conditions. In addition to these, airport environments can also play an important role leading to intensification of extreme weather conditions or high impact weather events, e.g., anthropogenic ice fog. To observe meteorological parameters, new remote sensing platforms, namely wind LIDAR, sodars, radars, and geostationary satellites, and in situ instruments at the surface and in the atmosphere, as well as aircraft and Unmanned Aerial Vehicles mounted sensors, are becoming more common. At smaller time and space scales (e.g., < 1 km), meteorological forecasts from NWP models need to be continuously improved for accurate physical parameterizations. Aviation weather forecasts also need to be developed to provide detailed information that represents both deterministic and statistical approaches. In this review, we present available resources and issues for aviation meteorology and evaluate them for required improvements related to measurements, nowcasting, forecasting, and climate change, and emphasize future challenges.
Journal Article