Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,427
result(s) for
"Predator–prey Relationships"
Sort by:
Animal vigilance : monitoring predators and competitors
by
Beauchamp, Guy
in
Animal behavior
,
Animal behavior. fast (OCoLC)fst00809079
,
Animal communities
2015
Animal Vigilance builds on the author's previous publication with Academic Press (Social Predation: How Group Living Benefits Predators and Prey) by developing several other themes including the development and mechanisms underlying vigilance, as well as developing more fully the evolution and function of vigilance.Animal vigilance has been.
The neuroethology of predation and escape
by
Sillar, Keith T. (Keith Thomas)
,
Picton, Laurence
,
Heitler, William J.
in
Alarm reaction
,
Animal behavior
,
Predation (Biology)
2016
THE NEUROETHOLOGY OF PREDATION AND ESCAPE
To eat and not get eaten is key to animal survival, and the arms race between predators and prey has driven the evolution of many rapid and spectacular behaviours.
This book explores the neural mechanisms controlling predation and escape, where specialisations in afferent pathways, central circuits, motor control and biomechanics can be traced through to natural animal behaviour.
Each chapter provides an integrated and comparative review of case studies in neuroethology. Ranging from the classic studies on bat biosonar and insect counter-measures, through to fish-eating snails armed with powerful neurotoxins, the book covers a diverse and fascinating range of adaptations. Common principles of biological design and organization are highlighted throughout the text.
The book is aimed at several audiences:
* for lecturers and students. This synthesis will help to underpin the curriculum in neuroscience and behavioural biology, especially for courses focusing on neuroethology
* for postgraduate students. The sections devoted to your area of specialism will give a flying start to your research reading, while the other chapters offer breadth and insights from comparative studies
* for academic researchers. The book will provide a valuable resource and an enjoyable read
Above all, we hope this book will inspire the next generation of neuroethologists.
The Consumer-Resource Relationship
2018
Better known as the predator-prey relationship, the consumer-resource relationship means the situation where a single species of organisms consumes for survival and reproduction. For example, Escherichia coli consumes glucose, cows consume grass, cheetahs consume baboons; these three very different situations, the first concerns the world of bacteria and the resource is a chemical species, the second concerns mammals and the resource is a plant, and in the final case the consumer and the resource are mammals, have in common the fact of consuming. In a chemostat, microorganisms generally consume (abiotic) minerals, but not always, bacteriophages consume bacteria that constitute a biotic resource. The Chemostat book dealt only with the case of abiotic resources. Mathematically this amounts to replacing in the two equation system of the chemostat the decreasing function by a general increasing then decreasing function. This simple change has greatly enriched the theory. This book shows in this new framework the problem of competition for the same resource.
Global Seabird Response to Forage Fish Depletion—One-Third for the Birds
2011
Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and rill, termed \"forage fish\") abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.
Journal Article
Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe
2019
Introduced in France more than a decade ago from China, the invasive Asian hornet
Vespa velutina
preys on honey bee
Apis mellifera
foragers at hive entrances and is a major concern for Western European beekeepers and governmental policies. Asian hornet predation is suspected to weaken honey bee colonies before the winter season. In this study, we assessed the risk of winter colony losses related to hornet-induced disturbances by combining field observations and model system simulations. We provide empirical evidence in bee foragers’ homing failures and bee foraging paralysis behaviour of the colony related to the predator–prey relationships between the hornet and the honey bees nearby colonies’ entrances. Our model-based assessment confirms concerns of beekeepers and governmental policies that these hornet-induced disturbances affect honey bee colony dynamics and winter survival. Simulations reveal that the foraging paralysis behavioural response of honey bee colonies is an important mechanism underlying winter colony collapse. We provide recommendations of beekeeping management to mitigate potential detrimental effects from hornets to ensure bee colony survival, such as the control of the hornet-induced foraging paralysis of Western European honey bee colonies that may be viewed as an unadapted behavioural response to the invasive predator.
Journal Article
Deep pelagic food web structure as revealed by in situ feeding observations
by
Haddock, Steven H. D.
,
Choy, C. Anela
,
Robison, Bruce H.
in
Aquatic Organisms - physiology
,
California
,
Cephalopods
2017
Food web linkages, or the feeding relationships between species inhabiting a shared ecosystem, are an ecological lens through which ecosystem structure and function can be assessed, and thus are fundamental to informing sustainable resource management. Empirical feeding datasets have traditionally been painstakingly generated from stomach content analysis, direct observations and from biochemical trophic markers (stable isotopes, fatty acids, molecular tools). Each approach carries inherent biases and limitations, as well as advantages. Here, using 27 years (1991–2016) of in situ feeding observations collected by remotely operated vehicles (ROVs), we quantitatively characterize the deep pelagic food web of central California within the California Current, complementing existing studies of diet and trophic interactions with a unique perspective. Seven hundred and forty-three independent feeding events were observed with ROVs from near-surface waters down to depths approaching 4000 m, involving an assemblage of 84 different predators and 82 different prey types, for a total of 242 unique feeding relationships. The greatest diversity of prey was consumed by narcomedusae, followed by physonect siphonophores, ctenophores and cephalopods. We highlight key interactions within the poorly understood ‘jelly web’, showing the importance of medusae, ctenophores and siphonophores as key predators, whose ecological significance is comparable to large fish and squid species within the central California deep pelagic food web. Gelatinous predators are often thought to comprise relatively inefficient trophic pathways within marine communities, but we build upon previous findings to document their substantial and integral roles in deep pelagic food webs.
Journal Article
Predator hunting mode and habitat domain alter nonconsumptive effects in predator-prey interactions
by
Schmitz, Oswald J.
,
Orrock, John L.
,
Preisser, Evan L.
in
Animal and plant ecology
,
Animal behavior
,
Animal ecology
2007
Predators can affect prey populations through changes in traits that reduce predation risk. These trait changes (nonconsumptive effects, NCEs) can be energetically costly and cause reduced prey activity, growth, fecundity, and survival. The strength of nonconsumptive effects may vary with two functional characteristics of predators: hunting mode (actively hunting, sit-and-pursue, sit-and-wait) and habitat domain (the ability to pursue prey via relocation in space; can be narrow or broad). Specifically, cues from fairly stationary sit-and-wait and sit-and-pursue predators should be more indicative of imminent predation risk, and thereby evoke stronger NCEs, compared to cues from widely ranging actively hunting predators. Using a meta-analysis of 193 published papers, we found that cues from sit-and-pursue predators evoked stronger NCEs than cues from actively hunting predators. Predator habitat domain was less indicative of NCE strength, perhaps because habitat domain provides less reliable information regarding imminent risk to prey than does predator hunting mode. Given the importance of NCEs in determining the dynamics of prey communities, our findings suggest that predator characteristics may be used to predict how changing predator communities translate into changes in prey. Such knowledge may prove particularly useful given rates of local predator change due to habitat fragmentation and the introduction of novel predators.
Journal Article
Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data
by
Wallace, J. Bruce
,
Meyer, Judy L.
,
Eggert, Susan L.
in
allochthonous inputs
,
Animals
,
aquatic invertebrates
2015
Riparian habitats provide detrital subsidies of varying quantities and qualities to recipient ecosystems. We used long-term data from three reference streams (covering 24 stream-years) and 13-year whole-stream organic matter manipulations to investigate the influence of terrestrial detrital quantity and quality on benthic invertebrate community structure, abundance, biomass, and secondary production in rockface (RF) and mixed substrates (MS) of forested headwater streams. Using a mesh canopy covering the entire treatment stream, we examined effects of litter exclusion, small- and large-wood removal, and addition of artificial wood (PVC) and leaves of varying quality on organic matter standing crops and invertebrate community structure and function. We assessed differences in functional feeding group distribution between substrate types as influenced by organic matter manipulations and long-term patterns of predator and prey production in manipulated vs. reference years. Particulate organic matter standing crops in MS of the treatment stream declined drastically with each successive year of litter exclusion, approaching zero after three years. Monthly invertebrate biomass and annual secondary production was positively related to benthic organic matter in the MS habitats. Rockface habitats exhibited fewer changes than MS habitats across all organic matter manipulations. With leaf addition, the patterns of functional group distribution among MS and RF habitats returned to patterns seen in reference streams. Secondary production per unit organic matter standing crop was greatest for the leaf addition period, followed by the reference streams, and significantly less for the litter exclusion and wood removal periods. These data indicate that the limited organic matter remaining in the stream following litter exclusion and wood removal was more refractory than that in the reference streams, whereas the added leaf material was more labile and readily converted into invertebrate production. Predator production and total production were tightly coupled in reference and treatment streams, indicating strong relationships between predators and their prey. Results from the artificial wood addition demonstrate that physical structure alone will not restore invertebrate productivity without detrital resources from the riparian forest. Our long-term studies conducted over three decades at the ecosystem scale unequivocally show the necessity of maintaining and restoring aquatic-terrestrial linkages in forested headwater streams.
Journal Article
Interannual variability: a crucial component of space use at the territory level
by
Stahler, Daniel R.
,
Smith, Douglas W.
,
Uboni, Alessia
in
Animals
,
Biological variation
,
Canis lupus
2015
Interannual variability in space use and how that variation is influenced by density-dependent and density-independent factors are important processes in population ecology. Nevertheless, interannual variability has been neglected by the majority of space use studies. We assessed that variation for wolves living in 15 different packs within Yellowstone National Park during a 13-year period (1996-2008). We estimated utilization distributions to quantify the intensity of space use within each pack's territory each year in summer and winter. Then, we used the volume of intersection index (VI) to quantify the extent to which space use varied from year to year. This index accounts for both the area of overlap and differences in the intensity of use throughout a territory and ranges between 0 and 1. The mean VI index was 0.49, and varied considerably, with ~20% of observations (
n
= 230) being <0.3 or >0.7. In summer, 42% of the variation was attributable to differences between packs. These differences can be attributable to learned behaviors and had never been thought to have such an influence on space use. In winter, 34% of the variation in overlap between years was attributable to interannual differences in precipitation and pack size. This result reveals the strong influence of climate on predator space use and underlies the importance of understanding how climatic factors are going to affect predator populations in the occurrence of climate change. We did not find any significant association between overlap and variables representing density-dependent processes (elk and wolf densities) or intraspecific competition (ratio of wolves to elk). This last result poses a challenge to the classic view of predator-prey systems. On a small spatial scale, predator space use may be driven by factors other than prey distribution.
Journal Article
Parsing handling time into its components: implications for responses to a temperature gradient
by
Brodeur, J
,
Sentis, A
,
Hemptinne, J.-L
in
Animal and plant ecology
,
Animal ecology
,
Animal, plant and microbial ecology
2013
The functional response is a key element of predator–prey interactions, and variations in its parameters influence interaction strength and population dynamics. Recent studies have used the equation of the metabolic theory of ecology (MTE) to quantify the effect of temperature on the parameter Th, called “handling time,” and then predict the responses of predators and communities to climate change. However, our understanding of the processes behind Th and how they vary with temperature remains limited. Using a ladybeetle–aphid system, we compared estimates of Th to direct observations of handling time across a temperature gradient. We found estimated Th values to be greater than observed Th values, suggesting that predation rate is not limited by the time available for handling prey. We next estimated the corrected digestion time, i.e., digestion time corrected for gut capacity, by subtracting observed to estimated Th values. We finally plotted the relationships between temperature and handling or digestion rates. As predicted by MTE, the corrected digestion rate increased exponentially with warming whereas, in contrast to MTE prediction, the relationship between handling rate and temperature was hump shaped. The parameter Th is thus confusing because it combines handling and digestive processes that have different thermal responses. This may explain why general patterns in the relationship between Th and temperature have been difficult to identify in previous studies.
Journal Article