Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
292
result(s) for
"Pregnane X Receptor - metabolism"
Sort by:
The hypolipidemic effect of MI-883, the combined CAR agonist/ PXR antagonist, in diet-induced hypercholesterolemia model
2025
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related nuclear receptors with overlapping regulatory functions in xenobiotic clearance but distinct roles in endobiotic metabolism. Car activation has been demonstrated to ameliorate hypercholesterolemia by regulating cholesterol metabolism and bile acid elimination, whereas PXR activation is associated with hypercholesterolemia and liver steatosis. Here we show a human CAR agonist/PXR antagonist, MI-883, which effectively regulates genes related to xenobiotic metabolism and cholesterol/bile acid homeostasis by leveraging CAR and PXR interactions in gene regulation. Through comprehensive analyses utilizing lipidomics, bile acid metabolomics, and transcriptomics in humanized PXR-CAR-CYP3A4/3A7 mice fed high-fat and high-cholesterol diets, we demonstrate that MI-883 significantly reduces plasma cholesterol levels and enhances fecal bile acid excretion. This work paves the way for the development of ligands targeting multiple xenobiotic nuclear receptors. Such ligands hold the potential for precise modulation of liver metabolism, offering new therapeutic strategies for metabolic disorders.
CAR and PXR receptors are known to regulate metabolism, however, there is no dual human ligand suitable for therapy. Here, the authors show a CAR agonist/PXR antagonist, MI-883, which regulates cholesterol/bile acid homeostasis by leveraging CAR and PXR activations in plasma cholesterol regulation.
Journal Article
Reverse metabolomics for the discovery of chemical structures from humans
2024
Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including
N
-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis
1
,
2
, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn’s disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4
+
T cells
3
and agonism of the pregnane X receptor
4
. Culture of bacteria belonging to the
Bifidobacterium
,
Clostridium
and
Enterococcus
genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.
A new discovery strategy, ‘reverse metabolomics’, facilitates high-throughput matching of mass spectrometry spectra in public untargeted metabolomics datasets, and a proof-of-concept experiment identified an association between microbial bile amidates and inflammatory bowel disease.
Journal Article
Mutation of a single amino acid of pregnane X receptor switches an antagonist to agonist by altering AF-2 helix positioning
2021
Pregnane X receptor (PXR) is activated by chemicals to transcriptionally regulate drug disposition and possibly decrease drug efficacy and increase resistance, suggesting therapeutic value for PXR antagonists. We previously reported the antagonist SPA70 and its analog SJB7, which unexpectedly is an agonist. Here, we describe another unexpected observation: mutating a single residue (W299A) within the PXR ligand-binding domain converts SPA70 to an agonist. After characterizing wild-type and W299A PXR activity profiles, we used molecular dynamics simulations to reveal that in wild-type PXR, agonists stabilize the activation function 2 (AF-2) helix in an “inward” position, but SPA70 displaces the AF-2. In W299A, however, SPA70 stabilizes the AF-2 “inward”, like agonists. We validated our model by predicting the antagonist SJC2 to be a W299A agonist, which was confirmed experimentally. Our work correlates previously unobserved ligand-induced conformational changes to PXR cellular activity and, for the first time, reveals how PXR antagonists work.
Journal Article
Mechanistic insights into the synergistic activation of the RXR–PXR heterodimer by endocrine disruptor mixtures
2021
Humans are chronically exposed to mixtures of xenobiotics referred to as endocrine-disrupting chemicals (EDCs). A vast body of literature links exposure to these chemicals with increased incidences of reproductive, metabolic, or neurological disorders. Moreover, recent data demonstrate that, when used in combination, chemicals have outcomes that cannot be predicted from their individual behavior. In its heterodimeric form with the retinoid X receptor (RXR), the pregnane X receptor (PXR) plays an essential role in controlling the mammalian xenobiotic response and mediates both beneficial and detrimental effects. Our previous work shed light on a mechanism by which a binary mixture of xenobiotics activates PXR in a synergistic fashion. Structural analysis revealed that mutual stabilization of the compounds within the ligand-binding pocket of PXR accounts for the enhancement of their binding affinity. In order to identify and characterize additional active mixtures, we combined a set of cell-based, biophysical, structural, and in vivo approaches. Our study reveals features that confirm the binding promiscuity of this receptor and its ability to accommodate bipartite ligands. We reveal previously unidentified binding mechanisms involving dynamic structural transitions and covalent coupling and report four binary mixtures eliciting graded synergistic activities. Last, we demonstrate that the robust activity obtained with two synergizing PXR ligands can be enhanced further in the presence of RXR environmental ligands. Our study reveals insights as to how low-dose EDC mixtures may alter physiology through interaction with RXR–PXR and potentially several other nuclear receptor heterodimers.
Journal Article
Mechanisms and Therapeutic Advances of PXR in Metabolic Diseases and Cancer
2025
The pregnane X receptor (PXR), a ligand-activated nuclear receptor, plays a central role in regulating the metabolism of both endogenous substances and xenobiotics. In recent years, increasing evidence has highlighted its involvement in chronic diseases, particularly metabolic disorders and cancer. PXR modulates drug-metabolizing enzymes, transporters, inflammatory factors, lipid metabolism, and immune-related pathways, contributing to the maintenance of hepatic–intestinal barrier homeostasis, energy metabolism, and inflammatory responses. Specifically, in type 2 diabetes mellitus (T2DM), PXR influences disease progression by regulating glucose metabolism and insulin sensitivity. In obesity, it affects adipogenesis and inflammatory processes. In atherosclerosis (AS), PXR exerts protective effects through cholesterol metabolism and anti-inflammatory actions. In metabolic dysfunction-associated steatotic liver disease (MASLD), it is closely associated with lipid synthesis, oxidative stress, and gut microbiota balance. Moreover, PXR plays dual roles in various cancers, including hepatocellular carcinoma, colorectal cancer, and breast cancer. Currently, PXR-targeted strategies, such as small molecule agonists and antagonists, represent promising therapeutic avenues for treating metabolic diseases and cancer. This review comprehensively summarizes the structural features, signaling pathways, and gene regulatory functions of PXR, as well as its role in metabolic diseases and cancer, providing insights into its therapeutic potential and future drug development challenges.
Journal Article
Multiple Modes of Vitamin K Actions in Aging-Related Musculoskeletal Disorders
2019
Vitamin K is a fat-soluble vitamin that was originally found as an essential factor for blood coagulation. With the discovery of its role as a co-factor for γ-glutamyl carboxylase (GGCX), its function for blood coagulation was understood as the activation of several blood coagulation factors by their γ-carboxylation. Over the last two decades, other modes of vitamin K actions have been discovered, such as the regulation of transcription by activating the steroid and xenobiotic receptor (SXR), physical association to 17β-Hydroxysteroid dehydrogenase type 4 (17β-HSD4), covalent modification of Bcl-2 antagonist killer 1 (Bak), and the modulation of protein kinase A (PKA) activity. In addition, several epidemiological studies have revealed that vitamin K status is associated with some aging-related diseases including osteoporosis, osteoarthritis, and sarcopenia. Clinical studies on single nucleotide polymorphisms of GGCX suggested an association between higher GGCX activity and bone protective effect, while recent findings using conditional knockout mice implied that a contribution in protective effect for bone loss by GGCX in osteoblastic lineage was unclear. GGCX in other cell lineages or in other tissues might play a protective role for osteoporosis. Meanwhile, animal experiments by our groups among others revealed that SXR, a putative receptor for vitamin K, could be important in the bone metabolism. In terms of the cartilage protective effect of vitamin K, both GGCX- and SXR-dependent mechanisms have been suggested. In clinical studies on osteoarthritis, the γ-carboxylation of matrix Gla protein (MGP) and gla-rich protein (GRP) may have a protective role for the disease. It is also suggested that SXR signaling has protective role for cartilage by inducing family with sequence similarity 20a (Fam20a) expression in chondrocytes. In the case of sarcopenia, a high vitamin K status in plasma was associated with muscle strength, large muscle mass, and high physical performance in some observational studies. However, the basic studies explaining the effects of vitamin K on muscular tissue are limited. Further research on vitamin K will clarify new biological mechanisms which contribute to human longevity and health through the prevention and treatment of aging-related musculoskeletal disorders.
Journal Article
Indole-3-Propionic Acid, a Functional Metabolite of Clostridium sporogenes, Promotes Muscle Tissue Development and Reduces Muscle Cell Inflammation
2021
Clostridium sporogenes (C. sporogenes), as a potential probiotic, metabolizes tryptophan and produces an anti-inflammatory metabolite, indole-3-propionic acid (IPA). Herein, we studied the effects of C. sporogenes and its bioactive metabolite, IPA, on skeletal muscle development and chronic inflammation in mice. In the in vivo study, the muscle tissues and serum samples of mice with C. sporogenes supplementation were used to analyze the effects of C. sporogenes on muscle metabolism; the IPA content was determined by metabonomics and ELISA. In an in vitro study, C2C12 cells were exposed to lipopolysaccharide (LPS) alone or LPS + IPA to verify the effect of IPA on muscle cell inflammation by transcriptome, and the involved mechanism was revealed by different functional assays. We observed that C. sporogenes colonization significantly increased the body weight and muscle weight gain, as well as the myogenic regulatory factors’ (MRFs) expression. In addition, C. sporogenes significantly improved host IPA content and decreased pro-inflammatory cytokine levels in the muscle tissue of mice. Subsequently, we confirmed that IPA promoted C2C12 cells’ proliferation by activating MRF signaling. IPA also effectively protected against LPS-induced C2C12 cells inflammation by activating Pregnane X Receptor and restoring the inhibited miR-26a-2-3p expression. miR-26a-2-3p serves as a novel muscle inflammation regulatory factor that could directly bind to the 3′-UTR of IL-1β, a key initiator factor in inflammation. The results suggested that C. sporogenes with its functional metabolite IPA not only helps muscle growth development, but also protects against inflammation, partly by the IPA/ miR-26a-2-3p /IL-1β cascade.
Journal Article
Cross-species analysis of hepatic cytochrome P450 and transport protein expression
by
Hammer, Helen
,
Marx-Stoelting, Philip
,
Braeuning, Albert
in
Cytochrome
,
Cytochrome P450
,
Cytochromes P450
2021
Most drugs and xenobiotics are metabolized in the liver. Amongst others, different cytochrome P450 (CYP) enzymes catalyze the metabolic conversion of foreign compounds, and various transport proteins are engaged in the excretion of metabolites from the hepatocytes. Inter-species and inter-individual differences in the hepatic levels and activities of drug-metabolizing enzymes and transporters result from genetic as well as from environmental factors, and play a decisive role in determining the pharmacokinetic properties of a compound in a given test system. To allow for a meaningful comparison of results from metabolism studies, it is, therefore, of utmost importance to know about the specific metabolic properties of the test systems, especially about the levels of metabolic enzymes such as the CYPs. Using a targeted proteomics approach, we, therefore, compared the hepatic levels of important CYP enzymes and transporters in different experimental systems in vivo and in vitro, namely Wistar rats, C57/Bl6 mice, mice humanized for the two xeno-sensing receptors PXR (pregnane-X-receptor) and CAR (constitutive androstane receptor), mice with human hepatocyte-repopulated livers, human HepaRG hepatocarcinoma cells, primary human hepatocytes, and human liver biopsies. In addition, the effects of xenobiotic inducers of drug metabolism on CYP enzymes and transporters were analyzed in selected systems. This study for the first time presents a comprehensive overview of similarities and differences in important drug metabolism-related proteins among the different experimental models.
Journal Article
Lithocholic acid ameliorates ulcerative colitis via the PXR/TLR4/NF-κB/NLRP3 signaling pathway and gut microbiota modulation
2025
Ulcerative colitis (UC) is a chronic inflammatory condition of the colon, closely linked to dysbiosis of gut microbiota and imbalances in bile acids. Lithocholic acid (LCA), a secondary bile acid, plays a crucial role in maintaining gut health; however, its specific therapeutic potential in UC remains to be fully elucidated. This study investigates the efficacy of LCA in alleviating UC and explores the underlying mechanisms, particularly focusing on the PXR/TLR4/NF-κB/NLRP3 signaling pathway and gut microbiota modulation. Using a dextran sulfate sodium (DSS)-induced colitis model, our findings demonstrate that LCA administration significantly alleviates colitis symptoms, evidenced by reduced disease activity index (DAI), increased colon length, improved intestinal barrier function, and decreased colonic inflammation. Mechanistically, LCA activates the pregnane X receptor (PXR), which inhibits TLR4-mediated NF-κB/NLRP3 inflammasome activation, leading to reduced colonic inflammation and lower levels of pro-inflammatory cytokines. Furthermore, LCA remodels gut microbiota by promoting beneficial bacterial growth, such as
Akkermansiaceae
,
Lactobacillaceae
and
Muribaculaceae
, while suppressing pathogenic and opportunistic pathogens, including
Enterobacteriaceae
and
Bacteroidaceae
. The gut microbiota-dependent effects of LCA were corroborated through antibiotic treatment and fecal microbiota transplantation (FMT) experiments. Notably, the absence of intestinal flora affected PXR expression and activity, modifying the aforementioned effects. Overall, our findings reveal that LCA ameliorates experimental colitis by regulating the PXR/TLR4/NF-κB/NLRP3 signaling cascade and modulating gut microbiota composition. This study underscores LCA’s potential as a targeted therapeutic strategy and a promising microbiota-focused approach for managing UC, offering new insights into the role of bile acids in intestinal health and disease management.
Graphical abstract
Journal Article
Drug-induced cis-regulatory elements in human hepatocytes affect molecular phenotypes associated with adverse reactions
2025
Genomic variation drives phenotypic diversity, including individual differences in drug response. While coding polymorphisms linked to drug efficacy and adverse reactions are well characterized, the contribution of noncoding regulatory elements remains underexplored. Using CAGE (Cap Analysis of Gene Expression), profiling transcription initiations of mRNAs and enhancer RNAs, we identify candidate cis-regulatory elements (CREs) and assessed their activities simultaneously in HepG2 cells expressing the drug-responsive transcription factor pregnane X receptor (PXR). Comparison with GWAS data reveals strong enrichment of the drug-induced CREs near variants associated with bilirubin and vitamin D levels. Among those bound by PXR in primary hepatocytes, we identify enhancers of
UGT1A1
,
TSKU
, and
CYP24A1
and functional alleles that alter regulatory activities. We also find that
TSKU
influences expression of vitamin D-metabolizing enzymes. This study expands the landscape of PXR-mediated regulatory elements and uncovers noncoding variants impacting drug response, providing insights into the genomic basis of adverse drug reactions.
Here the authors map drug-induced cis-regulatory elements by quantitative profiling of messenger and enhancer RNAs with CAGE. Enhancers of UGT1A1, TSKU, and CYP24A1, along with alleles affecting their regulatory activities, are revealed, shedding light on the genomic basis of adverse drug reactions.
Journal Article