Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,228
result(s) for
"Prenatal Exposure Delayed Effects - physiopathology"
Sort by:
Glucocorticoid exposure during hippocampal neurogenesis primes future stress response by inducing changes in DNA methylation
by
Arloth, Janine
,
Binder, Elisabeth B.
,
Müller, Nikola S.
in
BIOLOGICAL EMBEDDING ACROSS TIMESCALES SPECIAL FEATURE
,
Biological Sciences
,
Blood
2020
Prenatal stress exposure is associated with risk for psychiatric disorders later in life. This may be mediated in part via enhanced exposure to glucocorticoids (GCs), which are known to impact neurogenesis. We aimed to identify molecular mediators of these effects, focusing on long-lasting epigenetic changes. In a human hippocampal progenitor cell (HPC) line, we assessed the short- and long-term effects of GC exposure during neurogenesis on messenger RNA (mRNA) expression and DNA methylation (DNAm) profiles. GC exposure induced changes in DNAm at 27,812 CpG dinucleotides and in the expression of 3,857 transcripts (false discovery rate [FDR] ≤ 0.1 and absolute fold change [FC] expression ≥ 1.15). HPC expression and GC-affected DNAm profiles were enriched for changes observed during human fetal brain development. Differentially methylated sites (DMSs) with GC exposure clustered into 4 trajectories over HPC differentiation, with transient as well as long-lasting DNAm changes. Lasting DMSs mapped to distinct functional pathways and were selectively enriched for poised and bivalent enhancer marks. Lasting DMSs had little correlation with lasting expression changes but were associated with a significantly enhanced transcriptional response to a second acute GC challenge. A significant subset of lasting DMSs was also responsive to an acute GC challenge in peripheral blood. These tissue-overlapping DMSs were used to compute a polyepigenetic score that predicted exposure to conditions associated with altered prenatal GCs in newborn’s cord blood DNA. Overall, our data suggest that early exposure to GCs can change the set point of future transcriptional responses to stress by inducing lasting DNAm changes. Such altered set points may relate to differential vulnerability to stress exposure later in life.
Journal Article
Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome
2019
How obesity and elevated androgen levels in women with polycystic ovary syndrome (PCOS) affect their offspring is unclear. In a Swedish nationwide register-based cohort and a clinical case–control study from Chile, we found that daughters of mothers with PCOS were more likely to be diagnosed with PCOS. Furthermore, female mice (F0) with PCOS-like traits induced by late-gestation injection of dihydrotestosterone, with and without obesity, produced female F1–F3 offspring with PCOS-like reproductive and metabolic phenotypes. Sequencing of single metaphase II oocytes from F1–F3 offspring revealed common and unique altered gene expression across all generations. Notably, four genes were also differentially expressed in serum samples from daughters in the case–control study and unrelated women with PCOS. Our findings provide evidence of transgenerational effects in female offspring of mothers with PCOS and identify possible candidate genes for the prediction of a PCOS phenotype in future generations.
Journal Article
Adverse Maternal, Fetal, and Postnatal Effects of Hexafluoropropylene Oxide Dimer Acid (GenX) from Oral Gestational Exposure in Sprague-Dawley Rats
by
Medlock-Kakaley, Elizabeth
,
Conley, Justin M.
,
Travlos, Gregory S.
in
Acids
,
Animals
,
Biocompatibility
2019
Hexafluoropropylene oxide dimer acid [(HFPO-DA), GenX] is a member of the per- and polyfluoroalkyl substances (PFAS) chemical class, and elevated levels of HFPO-DA have been detected in surface water, air, and treated drinking water in the United States and Europe.
We aimed to characterize the potential maternal and postnatal toxicities of oral HFPO-DA in rats during sexual differentiation. Given that some PFAS activate peroxisome proliferator-activated receptors (PPARs), we sought to assess whether HFPO-DA affects androgen-dependent development or interferes with estrogen, androgen, or glucocorticoid receptor activity.
Steroid receptor activity was assessed with a suite of in vitro transactivation assays, and Sprague-Dawley rats were used to assess maternal, fetal, and postnatal effects of HFPO-DA exposure. Dams were dosed daily via oral gavage during male reproductive development (gestation days 14-18). We evaluated fetal testes, maternal and fetal livers, maternal serum clinical chemistry, and reproductive development of F1 animals.
HFPO-DA exposure resulted in negligible in vitro receptor activity and did not impact testosterone production or expression of genes key to male reproductive development in the fetal testis; however, in vivo exposure during gestation resulted in higher maternal liver weights ([Formula: see text]), lower maternal serum thyroid hormone and lipid profiles ([Formula: see text]), and up-regulated gene expression related to PPAR signaling pathways in maternal and fetal livers ([Formula: see text]). Further, the pilot postnatal study indicated lower female body weight and lower weights of male reproductive tissues in F1 animals.
HFPO-DA exposure produced multiple effects that were similar to prior toxicity evaluations on PFAS, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but seen as the result of higher oral doses. The mean dam serum concentration from the lowest dose group was 4-fold greater than the maximum serum concentration detected in a worker in an HFPO-DA manufacturing facility. Research is needed to examine the mechanisms and downstream events linked to the adverse effects of PFAS as are mixture-based studies evaluating multiple PFAS. https://doi.org/10.1289/EHP4372.
Journal Article
Maternal cannabis use in pregnancy and child neurodevelopmental outcomes
2020
Cannabis use in pregnancy has increased
1
,
2
, and many women continue to use it throughout pregnancy
3
. With the legalization of recreational cannabis in many jurisdictions, there is concern about potentially adverse childhood outcomes related to prenatal exposure
4
. Using the provincial birth registry containing information on cannabis use during pregnancy, we perform a retrospective analysis of all live births in Ontario, Canada, between 1 April 2007 and 31 March 2012. We link pregnancy and birth data to provincial health administrative databases to ascertain child neurodevelopmental outcomes. We use matching techniques to control for confounding and Cox proportional hazards regression models to examine associations between prenatal cannabis use and child neurodevelopment. We find an association between maternal cannabis use in pregnancy and the incidence of autism spectrum disorder in the offspring. The incidence of autism spectrum disorder diagnosis was 4.00 per 1,000 person-years among children with exposure compared to 2.42 among unexposed children, and the fully adjusted hazard ratio was 1.51 (95% confidence interval: 1.17–1.96) in the matched cohort. The incidence of intellectual disability and learning disorders was higher among offspring of mothers who use cannabis in pregnancy, although less statistically robust. We emphasize a cautious interpretation of these findings given the likelihood of residual confounding.
In a cohort of nearly half a million births in Ontario, Canada, maternal cannabis use in pregnancy was associated with an increased incidence of autism spectrum disorder diagnosis in the offspring.
Journal Article
Maternal paraben exposure triggers childhood overweight development
2020
Parabens are preservatives widely used in consumer products including cosmetics and food. Whether low-dose paraben exposure may cause adverse health effects has been discussed controversially in recent years. Here we investigate the effect of prenatal paraben exposure on childhood overweight by combining epidemiological data from a mother–child cohort with experimental approaches. Mothers reporting the use of paraben-containing cosmetic products have elevated urinary paraben concentrations. For butyl paraben (BuP) a positive association is observed to overweight within the first eight years of life with a stronger trend in girls. Consistently, maternal BuP exposure of mice induces a higher food intake and weight gain in female offspring. The effect is accompanied by an epigenetic modification in the neuronal Pro-opiomelanocortin (POMC) enhancer 1 leading to a reduced hypothalamic POMC expression. Here we report that maternal paraben exposure may contribute to childhood overweight development by altered POMC-mediated neuronal appetite regulation.
Parabens are preservatives widely used in consumer products including cosmetics and food. Here the authors demonstrate that maternal paraben exposure may contribute to childhood overweight development by an altered neuronal appetite regulation.
Journal Article
Prenatal stress and the developing brain: Risks for neurodevelopmental disorders
by
Dahnke, Robert
,
Van den Bergh, Bea R. H.
,
Mennes, Maarten
in
Amygdala
,
Amygdala - embryology
,
Amygdala - physiopathology
2018
The prenatal period is increasingly considered as a crucial target for the primary prevention of neurodevelopmental and psychiatric disorders. Understanding their pathophysiological mechanisms remains a great challenge. Our review reveals new insights from prenatal brain development research, involving (epi)genetic research, neuroscience, recent imaging techniques, physical modeling, and computational simulation studies. Studies examining the effect of prenatal exposure to maternal distress on offspring brain development, using brain imaging techniques, reveal effects at birth and up into adulthood. Structural and functional changes are observed in several brain regions including the prefrontal, parietal, and temporal lobes, as well as the cerebellum, hippocampus, and amygdala. Furthermore, alterations are seen in functional connectivity of amygdalar–thalamus networks and in intrinsic brain networks, including default mode and attentional networks. The observed changes underlie offspring behavioral, cognitive, emotional development, and susceptibility to neurodevelopmental and psychiatric disorders. It is concluded that used brain measures have not yet been validated with regard to sensitivity, specificity, accuracy, or robustness in predicting neurodevelopmental and psychiatric disorders. Therefore, more prospective long-term longitudinal follow-up studies starting early in pregnancy should be carried out, in order to examine brain developmental measures as mediators in mediating the link between prenatal stress and offspring behavioral, cognitive, and emotional problems and susceptibility for disorders.
Journal Article
Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior
2017
There is increasing concern about potential long-term effects of antibiotics on children’s health. Epidemiological studies have revealed that early-life antibiotic exposure can increase the risk of developing immune and metabolic diseases, and rodent studies have shown that administration of high doses of antibiotics has long-term effects on brain neurochemistry and behaviour. Here we investigate whether low-dose penicillin in late pregnancy and early postnatal life induces long-term effects in the offspring of mice. We find that penicillin has lasting effects in both sexes on gut microbiota, increases cytokine expression in frontal cortex, modifies blood–brain barrier integrity and alters behaviour. The antibiotic-treated mice exhibit impaired anxiety-like and social behaviours, and display aggression. Concurrent supplementation with
Lactobacillus rhamnosus
JB-1 prevents some of these alterations. These results warrant further studies on the potential role of early-life antibiotic use in the development of neuropsychiatric disorders, and the possible attenuation of these by beneficial bacteria.
There is concern about potential long-term effects of antibiotics on children’s health. Here Leclercq
et al
. show, in mice, that low doses of penicillin during late pregnancy and early life induce lasting effects on the offspring, including alterations in gut microbiota, brain cytokine levels and behaviour.
Journal Article
Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight
by
van der Plaat, Diana A.
,
Just, Allan C.
,
Everson, Todd M.
in
45/43
,
631/208/176
,
631/208/176/1988
2019
Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from −183 to 178 grams per 10% increase in methylation (P
Bonferroni
< 1.06 x 10
−7
). In additional analyses in 7,278 participants, <1.3% of birthweight-associated differential methylation is also observed in childhood and adolescence, but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs that were previously reported to be related to maternal smoking (55/914,
p
= 6.12 x 10
−74
) and BMI in pregnancy (3/914,
p
= 1.13x10
−3
), but not with those related to folate levels in pregnancy. Whether the associations that we observe are causal or explained by confounding or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.
Birthweight has been found to associate with later-life health outcomes. Here the authors perform a meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, identifying differentially methylated CpGs in neonatal blood that associate with birthweight.
Journal Article
Bisphenol A: an emerging threat to female fertility
by
Nardone, Antonio
,
Conforti, Alessandro
,
Muscogiuri, Giovanna
in
17β-Estradiol
,
Analysis
,
Androgens
2020
Bisphenol-A (BPA) has been reported to be associated to female infertility. Indeed, BPA has been found to be more frequently detected in infertile women thus leading to hypothesize a possible effect of BPA on natural conception and spontaneous fecundity. In addition, in procedures of medically assisted reproduction BPA exposure has been found to be negatively associated with peak serum estradiol levels during gonadotropin stimulation, number of retrieved oocytes, number of normally fertilized oocytes and implantation. BPA deleterious effects are more critical during perinatal exposure, causing dysregulation of hypothalamic-pituitary-ovarian axis in pups and adults, with a precocious maturation of the axis through a damage of GnRH pulsatility, gonadotropin signaling and sex steroid hormone production. Further, BPA exposure during early lifestage may have a transgenerational effect predisposing the subsequent generations to the risk of developing BPA related disease. Experimental studies suggested that prenatal, perinatal and postnatal exposure to BPA can impair several steps of ovarian development, induce ovarian morphology rearrangement and impair ovarian function, particularly folliculogenesis, as well as can impair uterus morphology and function, in female adult animal and offspring. Finally, studies carried out in animal models have been reported the occurrence of endometriosis-like lesions after BPA exposure. Moreover, BPA exposure has been described to encourage the genesis of PCOS-like abnormalities through the impairment of the secretion of sex hormones affecting ovarian morphology and functions, particularly folliculogenesis. The current manuscript summarizes the evidence regarding the association between BPA exposure and female infertility, reviewing both clinical and preclinical studies.
Journal Article
Long-term hippocampal interneuronopathy drives sex-dimorphic spatial memory impairment induced by prenatal THC exposure
by
Paraíso-Luna Juan
,
Simón-Sánchez, Samuel
,
Pujadas Mitona
in
Behavioral plasticity
,
Cannabinoid CB1 receptors
,
Cannabis
2020
Prenatal exposure to Δ9-tetrahydrocannabinol (THC), the most prominent active constituent of cannabis, alters neurodevelopmental plasticity with a long-term functional impact on adult offspring. Specifically, THC affects the development of pyramidal neurons and GABAergic interneurons via cannabinoid CB1 receptors (CB1R). However, the particular contribution of these two neuronal lineages to the behavioral alterations and functional deficits induced by THC is still unclear. Here, by using conditional CB1R knockout mice, we investigated the neurodevelopmental consequences of prenatal THC exposure in adulthood, as well as their potential sex differences. Adult mice that had been exposed to THC during embryonic development showed altered hippocampal oscillations, brain hyperexcitability, and spatial memory impairment. Remarkably, we found a clear sexual dimorphism in these effects, with males being selectively affected. At the neuronal level, we found a striking interneuronopathy of CCK-containing interneurons in the hippocampus, which was restricted to male progeny. This THC-induced CCK-interneuron reduction was not evident in mice lacking CB1R selectively in GABAergic interneurons, thus pointing to a cell-autonomous THC action. In vivo electrophysiological recordings of hippocampal LFPs revealed alterations in hippocampal oscillations confined to the stratum pyramidale of CA1 in male offspring. In addition, sharp-wave ripples, a major high-frequency oscillation crucial for learning and memory consolidation, were also altered, pointing to aberrant circuitries caused by persistent reduction of CCK+ basket cells. Taken together, these findings provide a mechanistic explanation for the long-term interneuronopathy responsible for the sex-dimorphic cognitive impairment induced by prenatal THC.
Journal Article