Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
580
result(s) for
"Presynaptic plasticity"
Sort by:
Role of α2δ-3 in regulating calcium channel localization at presynaptic active zones during homeostatic plasticity
by
Wang, Tingting
,
Vicini, Stefano
,
Wang, Ting
in
Autism
,
Calcium channels
,
Calcium channels (voltage-gated)
2023
The homeostatic modulation of synaptic transmission is an evolutionarily conserved mechanism that is critical for stabilizing the nervous system. At the Drosophila neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) compensates for impairments in postsynaptic glutamate receptors due to pharmacological blockade or genetic deletion. During PHP, there is an increase in presynaptic neurotransmitter release, counteracting postsynaptic changes and restoring excitation to baseline levels. Previous studies have shown that α2δ-3, an auxiliary subunit of voltage-gated calcium channels (VGCCs), is essential for both the rapid induction and sustained expression of PHP at the Drosophila NMJ. However, the molecular mechanisms by which α2δ-3 regulates neurotransmitter release during PHP remain to be elucidated. In this study, we utilized electrophysiological, confocal imaging, and super-resolution imaging approaches to explore how α2δ-3 regulates synaptic transmission during PHP. Our findings suggest that α2δ-3 governs PHP by controlling the localization of the calcium channel pore-forming α1 subunit at presynaptic release sites, or active zones. Moreover, we examined the role of two structural domains within α2δ-3 in regulating neurotransmitter release and calcium channel localization. Our results highlight that these domains in α2δ-3 serve distinct functions in controlling synaptic transmission and presynaptic calcium channel abundance, at baseline in the absence of perturbations and during PHP. In summary, our research offers compelling evidence that α2δ-3 is an indispensable signaling component for controlling calcium channel trafficking and stabilization in homeostatic plasticity.
Journal Article
Mechanisms of Synaptic Vesicle Exo- and Endocytosis
2022
Within 1 millisecond of action potential arrival at presynaptic terminals voltage–gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.
Journal Article
Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices
2020
The close replication of synaptic functions is an important objective for achieving a highly realistic memristor-based cognitive computation. The emulation of neurobiological learning rules may allow the development of neuromorphic systems that continuously learn without supervision. In this work, the Bienenstock-Cooper-Munro learning rule, as a typical case of spike-rate-dependent plasticity, is mimicked using a generalized triplet-spike-timing-dependent plasticity scheme in a WO
3−x
memristive synapse. It demonstrates both presynaptic and postsynaptic activities and remedies the absence of the enhanced depression effect in the depression region, allowing a better description of the biological counterpart. The threshold sliding effect of Bienenstock-Cooper-Munro rule is realized using a history-dependent property of the second-order memristor. Rate-based orientation selectivity is demonstrated in a simulated feedforward memristive network with this generalized Bienenstock-Cooper-Munro framework. These findings provide a feasible approach for mimicking Bienenstock-Cooper-Munro learning rules in memristors, and support the applications of spatiotemporal coding and learning using memristive networks.
Designing reliable and energy efficient neuromorphic computing systems for spatiotemporal coding remains a challenge. Here, the authors demonstrate a type of spike-rate-dependent plasticity based on a triplet learning scheme in a WO
3−x
-based second-order memristor network for spatiotemporal patterns.
Journal Article
Molecular mechanisms driving homeostatic plasticity of neurotransmitter release
by
Fejtova, Anna
,
Lazarevic, Vesna
,
Andres-Alonso, Maria
in
cytomatrix at the active zone
,
Epilepsy
,
Excitability
2013
Homeostatic plasticity is a process by which neurons adapt to the overall network activity to keep their firing rates in a reasonable range. At the cellular level this kind of plasticity comprises modulation of cellular excitability and tuning of synaptic strength. In this review we concentrate on presynaptic homeostatic plasticity controlling the efficacy of neurotransmitter release from presynaptic boutons. While morphological and electrophysiological approaches were successful to describe homeostatic plasticity-induced changes in the presynaptic architecture and function, cellular and molecular mechanisms underlying those modifications remained largely unknown for a long time. We summarize the latest progress made in the understanding of homeostasis-induced regulation of different steps of the synaptic vesicle cycle and the molecular machineries involved in this process. We particularly focus on the role of presynaptic scaffolding proteins, which functionally and spatially organize synaptic vesicle clusters, neurotransmitter release sites and the associated endocytic machinery. These proteins turned out to be major presynaptic substrates for remodeling during homeostatic plasticity. Finally, we discuss cellular processes and signaling pathways acting during homeostatic molecular remodeling and their potential involvement in the maladaptive plasticity occurring in multiple neuropathologic conditions such as neurodegeneration, epilepsy and neuropsychiatric disorders.
Journal Article
Optogenetics at the presynapse
by
Rost, Benjamin R
,
Yizhar, Ofer
,
Schmitz, Dietmar
in
Acidification
,
Actuators
,
Biological activity
2022
Optogenetic actuators enable highly precise spatiotemporal interrogation of biological processes at levels ranging from the subcellular to cells, circuits and behaving organisms. Although their application in neuroscience has traditionally focused on the control of spiking activity at the somatodendritic level, the scope of optogenetic modulators for direct manipulation of presynaptic functions is growing. Presynaptically localized opsins combined with light stimulation at the terminals allow light-mediated neurotransmitter release, presynaptic inhibition, induction of synaptic plasticity and specific manipulation of individual components of the presynaptic machinery. Here, we describe presynaptic applications of optogenetic tools in the context of the unique cell biology of axonal terminals, discuss their potential shortcomings and outline future directions for this rapidly developing research area.This Review provides a comprehensive overview of presynaptic applications of optogenetic tools, including the associated challenges, current limitations and future directions for this approach.
Journal Article
Retrograde semaphorin–plexin signalling drives homeostatic synaptic plasticity
2017
At the neuromuscular junction in
Drosophila
, signalling from postsynaptic Sema2b to presynaptic PlexB controls presynaptic homeostatic plasticity through Mical-mediated regulation of the readily releasable pool of synaptic vesicles.
Synaptic backchat with semaphorin
Some key regulators of embryonic neuronal development, such as the semaphorin proteins and their plexin receptors, are also expressed in the adult brain, but their function there is not clear. Working at the neuromuscular junction in
Drosophila
, Graeme Davis and colleagues now report that postsynaptic, secreted Sema2b acts as a retrograde signal on presynaptic PlexB receptors to modify the actin cytoskeleton and control the fraction of synaptic vesicles available for neurotransmitter release. Involving semaphorins and plexins in the stabilization of adult synaptic physiology provides a new, molecular handle for investigating the potential role of maladaptive homeostatic plasticity in neurological and psychiatric diseases.
Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour
1
,
2
,
3
,
4
. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from
Drosophila
to human
1
,
5
. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin–plexin signalling instructs axon guidance and neuronal morphogenesis
6
,
7
,
8
,
9
,
10
. However, semaphorins and plexins are also expressed in the adult brain
11
,
12
,
13
,
14
,
15
,
16
. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in
Drosophila
. Further, we show that Sema2b–PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin–plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour.
Journal Article
Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity
2020
The complex relationship between specific hippocampal oscillation frequency deficit and cognitive dysfunction in the ischemic brain is unclear. Here, using a mouse two-vessel occlusion (2VO) cerebral ischemia model, we show that visual stimulation with a 40 Hz light flicker drove hippocampal CA1 slow gamma and restored 2VO-induced reduction in CA1 slow gamma power and theta-low gamma phase-amplitude coupling, but not those of the high gamma. Low gamma frequency lights at 30 Hz, 40 Hz, and 50 Hz, but not 10 Hz, 80 Hz, and arrhythmic frequency light, were protective against degenerating CA1 neurons after 2VO, demonstrating the importance of slow gamma in cognitive functions after cerebral ischemia. Mechanistically, 40 Hz light flicker enhanced RGS12-regulated CA3-CA1 presynaptic N-type calcium channel-dependent short-term synaptic plasticity and associated postsynaptic long term potentiation (LTP) after 2VO. These results support a causal relationship between CA1 slow gamma and cognitive dysfunctions in the ischemic brain.
Brain ischemia has been associated with deficits in neural oscillations. Here in an animal model, the authors show that modulation of low-gamma oscillations using a light flicker can restore low gamma oscillations and protect ischemic neurons.
Journal Article
Rapid active zone remodeling consolidates presynaptic potentiation
2019
Neuronal communication across synapses relies on neurotransmitter release from presynaptic active zones (AZs) followed by postsynaptic transmitter detection. Synaptic plasticity homeostatically maintains functionality during perturbations and enables memory formation. Postsynaptic plasticity targets neurotransmitter receptors, but presynaptic mechanisms regulating the neurotransmitter release apparatus remain largely enigmatic. By studying
Drosophila
neuromuscular junctions (NMJs) we show that AZs consist of nano-modular release sites and identify a molecular sequence that adds modules within minutes of inducing homeostatic plasticity. This requires cognate transport machinery and specific AZ-scaffolding proteins. Structural remodeling is not required for immediate potentiation of neurotransmitter release, but necessary to sustain potentiation over longer timescales. Finally, mutations in Unc13 disrupting homeostatic plasticity at the NMJ also impair short-term memory when central neurons are targeted, suggesting that both plasticity mechanisms utilize Unc13. Together, while immediate synaptic potentiation capitalizes on available material, it triggers the coincident incorporation of modular release sites to consolidate synaptic potentiation.
Synaptic plasticity ensures functionality during perturbations and enables memory formation. Here, the authors describe homeostatic functional and nano-modular active zone modifications for immediate and long-lasting enhancement of neurotransmitter release, and identify Unc13 as a presynaptic molecular target for homeostatic potentiation and learning.
Journal Article
Perineuronal nets protect long-term memory by limiting activity-dependent inhibition from parvalbumin interneurons
by
Shi, Wei
,
Liu, Weixuan
,
Du, Shuwen
in
Animal memory
,
Behavioral plasticity
,
Biological Sciences
2019
Perineuronal nets (PNNs), a complex of extracellular matrix molecules that mostly surround GABAergic neurons in various brain regions, play a critical role in synaptic plasticity. The function and cellular mechanisms of PNNs in memory consolidation and reconsolidation processes are still not well understood. We hypothesized that PNNs protect long-term memory by limiting feedback inhibition from parvalbumin (PV) interneurons to projection neurons. Using behavioral, electrophysiological, and optogenetic approaches, we investigated the role of PNNs in fear memory consolidation and reconsolidation and GABAergic long-term potentiation (LTP). We made the discovery that the formation of PNNs was promoted by memory events in the hippocampus (HP), and we also demonstrated that PNN formation in both the HP and the anterior cingulate cortex (ACC) is essential for memory consolidation and reconsolidation of recent and remote memories. Removal of PNNs resulted in evident LTP impairments, which were rescued by acute application of picrotoxin, a GABAA receptor blocker, indicating that enhanced inhibition was the cause of the LTP impairments induced by PNN removal. Moreover, removal of PNNs switched GABAA receptor-mediated long-term depression to LTP through a presynaptic mechanism. Furthermore, the reduced activity of PV interneurons surrounded by PNNs regulated theta oscillations during fear memory consolidation. Finally, optogenetically suppressing PV interneurons rescued the memory impairment caused by removal of PNNs. Altogether, these results unveil the function of PV interneurons surrounding PNNs in protecting recent and remote contextual memory through the regulation of PV neuron GABA release.
Journal Article
Rapid and sustained homeostatic control of presynaptic exocytosis at a central synapse
by
Kita, Katarzyna
,
Müller, Martin
,
Delvendahl, Igor
in
Animal behavior
,
Animals
,
Biological Sciences
2019
Animal behavior is remarkably robust despite constant changes in neural activity. Homeostatic plasticity stabilizes central nervous system (CNS) function on time scales of hours to days. If and how CNS function is stabilized on more rapid time scales remains unknown. Here, we discovered that mossy fiber synapses in the mouse cerebellum homeostatically control synaptic efficacy within minutes after pharmacological glutamate receptor impairment. This rapid form of homeostatic plasticity is expressed presynaptically. We show that modulations of readily releasable vesicle pool size and release probability normalize synaptic strength in a hierarchical fashion upon acute pharmacological and prolonged genetic receptor perturbation. Presynaptic membrane capacitance measurements directly demonstrate regulation of vesicle pool size upon receptor impairment. Moreover, presynaptic voltage-clamp analysis revealed increased Ca2+-current density under specific experimental conditions. Thus, homeostatic modulation of presynaptic exocytosis through specific mechanisms stabilizes synaptic transmission in a CNS circuit on time scales ranging from minutes to months. Rapid presynaptic homeostatic plasticity may ensure stable neural circuit function in light of rapid activity-dependent plasticity.
Journal Article