Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
15,448 result(s) for "Primary productivity"
Sort by:
Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes
Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally – a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere.
Plant diversity enhances productivity and soil carbon storage
Despite evidence from experimental grasslands that plant diversity increases biomass production and soil organic carbon (SOC) storage, it remains unclear whether this is true in natural ecosystems, especially under climatic variations and human disturbances. Based on field observations from 6,098 forest, shrubland, and grassland sites across China and predictions from an integrative model combining multiple theories, we systematically examined the direct effects of climate, soils, and human impacts on SOC storage versus the indirect effects mediated by species richness (SR), aboveground net primary productivity (ANPP), and belowground biomass (BB). We found that favorable climates (high temperature and precipitation) had a consistent negative effect on SOC storage in forests and shrublands, but not in grasslands. Climate favorability, particularly high precipitation, was associated with both higher SR and higher BB, which had consistent positive effects on SOC storage, thus offsetting the direct negative effect of favorable climate on SOC. The indirect effects of climate on SOC storage depended on the relationships of SR with ANPP and BB, which were consistently positive in all biome types. In addition, human disturbance and soil pH had both direct and indirect effects on SOC storage, with the indirect effects mediated by changes in SR, ANPP, and BB. High soil pH had a consistently negative effect on SOC storage. Our findings have important implications for improving global carbon cycling models and ecosystem management: Maintaining high levels of diversity can enhance soil carbon sequestration and help sustain the benefits of plant diversity and productivity.
Quantifying soil moisture impacts on light use efficiency across biomes
Terrestrial primary productivity and carbon cycle impacts of droughts are commonly quantified using vapour pressure deficit (VPD) data and remotely sensed greenness, without accounting for soil moisture. However, soil moisture limitation is known to strongly affect plant physiology. Here, we investigate light use efficiency, the ratio of gross primary productivity (GPP) to absorbed light. We derive its fractional reduction due to soil moisture (fLUE), separated from VPD and greenness changes, using artificial neural networks trained on eddy covariance data, multiple soil moisture datasets and remotely sensed greenness. This reveals substantial impacts of soil moisture alone that reduce GPP by up to 40% at sites located in sub-humid, semi-arid or arid regions. For sites in relatively moist climates, we find, paradoxically, a muted fLUE response to drying soil, but reduced fLUE under wet conditions. fLUE identifies substantial drought impacts that are not captured when relying solely on VPD and greenness changes and, when seasonally recurring, are missed by traditional, anomaly-based drought indices. Counter to common assumptions, fLUE reductions are largest in drought-deciduous vegetation, including grasslands. Our results highlight the necessity to account for soil moisture limitation in terrestrial primary productivity data products, especially for drought-related assessments.
Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above‐ground productivity in a tallgrass prairie
Nutrient additions typically increase terrestrial ecosystem productivity, reduce plant diversity and alter plant community composition; however, the effects of P additions and interactions between N and P are understudied. We added both N (10 g m⁻²) and three levels of P (2.5, 5 and 10 g m⁻²) to a native, ungrazed tallgrass prairie burned biennially in northeastern Kansas, USA, to determine the independent and interactive effects of N and P on plant community composition and above‐ground net primary productivity (ANPP). After a decade of nutrient additions, we found few effects of P alone on plant community composition, N alone had stronger effects, and N and P additions combined resulted in much larger effects than either alone. The changes in the plant community were driven by decreased abundance of C₄ grasses, perhaps in response to altered interactions with mycorrhizal fungi, concurrent with increased abundance of non‐N‐fixing perennial and annual forbs. Surprisingly, this large shift in plant community composition had little effect on plant community richness, evenness and diversity. The shift in plant composition with N and P combined had large but variable effects on ANPP over time. Initially, N and N and P combined increased above‐ground productivity of C₄ grasses, but after 4 years, productivity returned to ambient levels as grasses declined in abundance and the community shifted to dominance by non‐N‐fixing and annual forbs. Once these forbs increased in abundance and became dominant, ANPP was more variable, with pulses in forb production only in years when the site was burned. Synthesis. We found that a decade of N and P additions interacted to drive changes in plant community composition, which had large effects on ecosystem productivity but minimal effects on plant community diversity. The large shift in species composition increased variability in ANPP over time as a consequence of the effects of burning. Thus, increased inputs of N and P to terrestrial ecosystems have the potential to alter stability of ecosystem function over time, particularly within the context of natural disturbance regimes.
Niche packing and expansion account for species richness–productivity relationships in global bird assemblages
Aim: Niche theory proposes that increases in species richness along an environmental gradient are associated with a packing of species inside the niche space or an expansion of the niche space. We test whether and under what conditions an increase in bird species richness along a gradient of resource availability is associated with an expansion or packing of the niche as measured based on traits related to resource use. Location: Global. Time period: Current. Major taxa studied: Birds. Methods: We measured birds' realized niche space as the standardized departure between observed total trait range and its null expectation (functional richness: SES.FRic) in 12,188 cells worldwide. We first correlated both species richness and this measurement along the global net primary productivity (NPP) gradient using linear regressions. Second, we investigated the non-stationarity of the species richness–NPP relationship with Lee's bivariate correlation, a measure of the spatial association of two variables. We then assessed the number of cells exhibiting a significant positive species richness–NPP association and a significant negative or positive SES.FRic. Third, we assessed whether species of species-rich assemblages occur within or outside the niche space of species-poor assemblages. Results: At a global scale, we found that species richness and SES.FRic increased with NPP. We also showed that cells with a significant positive association between species richness and NPP exhibited niche packing (1,699 assemblages out of 12,188) more than niche expansion (five assemblages). Niche packing was associated with complex biomes such as tropical rain forests. Finally, by showing that species in species-rich assemblages predominantly occur within the niche space of species-poor assemblages, we showed that the increase in SES.FRic with NPP contributed little to the increase in species richness. Main conclusion: Although niche volume increases with species richness along an NPP gradient, we confirmed that niche packing is the pattern most associated with the species richness–NPP relationship at a global scale.
The variation of productivity and its allocation along a tropical elevation gradient
Why do forest productivity and biomass decline with elevation? To address this question, research to date generally has focused on correlative approaches describing changes in woody growth and biomass with elevation. We present a novel, mechanistic approach to this question by quantifying the autotrophic carbon budget in 16 forest plots along a 3300m elevation transect in Peru. Low growth rates at high elevations appear primarily driven by low gross primary productivity (GPP), with little shift in either carbon use efficiency (CUE) or allocation of net primary productivity (NPP) between wood, fine roots and canopy. The lack of trend in CUE implies that the proportion of photosynthate allocated to autotrophic respiration is not sensitive to temperature. Rather than a gradual linear decline in productivity, there is some limited but nonconclusive evidence of a sharp transition in NPP between submontane and montane forests, which may be caused by cloud immersion effects within the cloud forest zone. Leaf-level photosynthetic parameters do not decline with elevation, implying that nutrient limitation does not restrict photosynthesis at high elevations. Our data demonstrate the potential of whole carbon budget perspectives to provide a deeper understanding of controls on ecosystem functioning and carbon cycling.
Woody encroachment decreases diversity across North American grasslands and savannas
Woody encroachment is a widespread and acute phenomenon affecting grasslands and savannas worldwide. We performed a meta-analysis of 29 studies from 13 different grassland/savanna communities in North America to determine the consequences of woody encroachment on plant species richness. In all 13 communities, species richness declined with woody plant encroachment (average decline = 45%). Species richness declined more in communities with higher precipitation ( r 2 = 0.81) and where encroachment was associated with a greater change in annual net primary productivity (ANPP; r 2 = 0.69). Based on the strong positive correlation between precipitation and ANPP following encroachment ( r 2 = 0.87), we hypothesize that these relationships occur because water-limited woody plants experience a greater physiological and demographic release as precipitation increases. The observed relationship between species richness and ANPP provides support for the theoretical expectation that a trade-off occurs between richness and productivity in herbaceous communities. We conclude that woody plant encroachment leads to significant declines in species richness in North American grassland/savanna communities.
Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: A trait-based predictive framework
1. Anthropogenic nitrogen (N) deposition is exposing plants and their arbuscular mycorrhizal fungi (AMFs) to elevated N availability, often leading to shifts in communities of AMF. However, physiological trade-offs among AMF taxa in their response to N enrichment vs the ability to acquire other soil nutrients could have negative effects on plant and ecosystem productivity. It follows that information on the functional traits of AMF taxa can be used to generate predictions of their potential role in mediating ecosystem responses to N enrichment. 2. Arbuscular mycorrhizal fungi taxa that produce extensive networks of external hyphae should forage for N and phosphorus (P) more effectively, but these services incur greater carbon (C) costs to the plant. If N enrichment ameliorates plant nutrient limitation, then plants may reduce C available for AMF, which in turn could eliminate AMF taxa with large extensive external hyphae from the soil community. As a result, the remaining AMF taxa may confer less benefit to their host plants. 3. Using a synthesis of data from the literature, we found that the ability of a taxon to persist in the face of increasing soil N availability was particularly high in isolates from the genus Glomus, but especially low among the Gigasporaceae. Across AMF genera, our data support the prediction that AMF with a tolerance for high soil N may confer a lower P benefit to their host plant. Relationships between high N tolerance and production of external hyphae were mixed. 4. Synthesis. If the relationship between N tolerance and plant P benefit is widespread then shifts in arbuscular mycorrhizal fungi communities associated with N deposition could have negative consequences for the ability of plants to acquire P and possibly other nutrients via a mycorrhizal pathway. Based on this relationship, we predict that arbuscular mycorrhizal fungi responses could constrain net primary productivity in P-limited ecosystems exposed to N enrichment. This prediction could be tested in future empirical and modelling studies.
productivity, metabolism and carbon cycle of tropical forest vegetation
1. Tropical forests account for one‐third of the total metabolic activity of the Earth’s land surface. Hence, understanding the controls on tropical forest photosynthesis and respiration, and the allocation of the products of photosynthesis to canopy, woody tissue and rhizosphere, is important to understand global ecosystem functioning. 2. I review how studies in tropical ecosystem ecology have progressed since their inception in the 1960s towards developing a quantitative, mechanistic and global description of the carbon cycle of tropical vegetation. 3. I present a synthesis of studies in tropical forest sites in the Americas and Asia for which gross primary productivity (GPP) has been reported, and a subset of these sites for which net primary productivity (NPP) and ecosystem carbon use efficiency (CUE) have been estimated. GPP ranges between 30 and 40 Mg C ha−1 year−1 in lowland moist tropical forests and declines with elevation. CUE in tropical forests is at the low end of the global range reported for forests. 4. A pathway and framework are presented to explain the link between photosynthesis and tropical forest biomass, and to explain differences in carbon cycling and biomass between forests. Variation in CUE and allocation of NPP can be as important as variation in GPP in explaining differences in tropical forest growth rates between sites. 5. Finally, I explore some of the key questions surrounding the functioning and future of tropical forests in the rapidly changing conditions of the early Anthropocene. 6. Synthesis.There have been significant recent advances in quantifying the carbon cycle of tropical forests, but our understanding of causes of variation amongst forests is still poor. Moreover, we should expect all tropical forests in the 21st century, whether intact or disturbed, to be undergoing rapid change in function and composition; the key challenge for tropical ecosystem ecologists is to determine and understand the major and most fundamental aspects of this change.
Grassland productivity limited by multiple nutrients
Terrestrial ecosystem productivity is widely accepted to be nutrient limited 1 . Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP) 2 , 3 , the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized 4 – 8 . However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K + μ ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K + μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment. Terrestrial ecosystem productivity is widely accepted to be nutrient limited. A series of standardized nutrient addition experiments, carried out on grasslands on five continents, suggests aboveground grassland productivity is commonly limited by multiple nutrients, including potassium and micronutrients.