Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,824 result(s) for "Printers (data processing)"
Sort by:
Infrared thermography–based framework for in situ classification of underextrusions in material extrusion
Material extrusion (ME) is a widely used additive manufacturing (AM) technique, known for its versatility, cost-effectiveness, and ability to produce complex parts on-demand with greater customization and reduced waste. However, the process is impeded by unpredictable factors causing defects such as voids, overextrusions, and underextrusions, which smart manufacturing in Industry 4.0 aims to mitigate. In this study, we report a novel infrared (IR) thermography–based continuous data acquisition and processing framework that can differentiate various levels of in situ underextrusions. While existing underextrusion detection techniques require mid-print interruptions, our framework detects defects without any interruption. The methodology includes integrating an IR camera into a commercially available extrusion-based 3D printer for continuous in-printing data acquisition. The G-code for printing a rectangular block is intentionally modified to induce various levels of known underextrusions. Additionally, a novel signal processing algorithm is developed to automate real-time data processing and analysis, including signal normalization, artifact removal, and feature extraction. Results are obtained by developing a correlation matrix to compare the correlation coefficients of time series thermal data from the printed samples. Time-domain thermal features are also extracted to identify extrusion levels of 25%, 50%, 75%, and 100%. This study demonstrates that by utilizing the proposed framework, thermal data can identify various extrusion levels without mid-print interruption and determine the severity of process deviations within 5 s. This framework paves the way for integrating a thermal data-driven closed-loop monitoring and adjustment system capable of producing first-time-ready parts.
Voxelated soft matter via multimaterial multinozzle 3D printing
There is growing interest in voxelated matter that is designed and fabricated voxel by voxel 1 – 4 . Currently, inkjet-based three-dimensional (3D) printing is the only widely adopted method that is capable of creating 3D voxelated materials with high precision 1 – 4 , but the physics of droplet formation requires the use of low-viscosity inks to ensure successful printing 5 . By contrast, direct ink writing, an extrusion-based 3D printing method, is capable of patterning a much broader range of materials 6 – 13 . However, it is difficult to generate multimaterial voxelated matter by extruding monolithic cylindrical filaments in a layer-by-layer manner. Here we report the design and fabrication of voxelated soft matter using multimaterial multinozzle 3D (MM3D) printing, in which the composition, function and structure of the materials are programmed at the voxel scale. Our MM3D printheads exploit the diode-like behaviour that arises when multiple viscoelastic materials converge at a junction to enable seamless, high-frequency switching between up to eight different materials to create voxels with a volume approaching that of the nozzle diameter cubed. As exemplars, we fabricate a Miura origami pattern 14 and a millipede-like soft robot that locomotes by co-printing multiple epoxy and silicone elastomer inks of stiffness varying by several orders of magnitude. Our method substantially broadens the palette of voxelated materials that can be designed and manufactured in complex motifs. Voxelated soft matter is designed and fabricated using multimaterial multinozzle three-dimensional printing, which switches between different viscoelastic inks along the same print filament to print multiple materials simultaneously.
The Effect of Material Fresh Properties and Process Parameters on Buildability and Interlayer Adhesion of 3D Printed Concrete
The advent of digital concrete fabrication calls for advancing our understanding of the interaction of 3D printing with material rheology and print parameters, in addition to developing new measurement and control techniques. Thixotropy is the main challenge associated with printable material, which offers high yield strength and low viscosity. The higher the thixotropy, the better the shape stability and the higher buildability. However, exceeding a minimum value of thixotropy can cause high extrusion pressure and poor interface bond strength if the printing parameters are not optimized to the part design. This paper aims to investigate the effects of both material and process parameters on the buildability and inter-layer adhesion properties of 3D printed cementitious materials, produced with different thixotropy and print head standoff distances. Nano particles are used to increase the thixotropy and, in this context, a lower standoff distance is found to be useful for improving the bond strength. The low viscosity “control” sample is unaffected by the variation in standoff distances, which is attributed to its flowability and low yield stress characteristics that lead to strong interfacial bonding. This is supported by our microscopic observations.
3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors
The field of tissue engineering has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes for regenerative medicine and pharmaceutical research. Conventional scaffold-based approaches are limited in their capacity to produce constructs with the functionality and complexity of native tissue. Three-dimensional (3D) bioprinting offers exciting prospects for scaffolds fabrication, as it allows precise placement of cells, biochemical factors, and biomaterials in a layer-by-layer process. Compared with traditional scaffold fabrication approaches, 3D bioprinting is better to mimic the complex microstructures of biological tissues and accurately control the distribution of cells. Here, we describe recent technological advances in bio-fabrication focusing on 3D bioprinting processes for tissue engineering from data processing to bioprinting, mainly inkjet, laser, and extrusion-based technique. We then review the associated bioink formulation for 3D bioprinting of human tissues, including biomaterials, cells, and growth factors selection. The key bioink properties for successful bioprinting of human tissue were summarized. After bioprinting, the cells are generally devoid of any exposure to fluid mechanical cues, such as fluid shear stress, tension, and compression, which are crucial for tissue development and function in health and disease. The bioreactor can serve as a simulator to aid in the development of engineering human tissues from in vitro maturation of 3D cell-laden scaffolds. We then describe some of the most common bioreactors found in the engineering of several functional tissues, such as bone, cartilage, and cardiovascular applications. In the end, we conclude with a brief insight into present limitations and future developments on the application of 3D bioprinting and bioreactor systems for engineering human tissue.
Development of Jigs in Reducer Work for Ink Marking in The Pipe Turning Process
In the pipe turning process, jigs and fixtures are important production tools in manufacturing, as they perform the functions of positioning, supporting, and securing components to be assembled. In a case study, it was found that a new inkjet printer had been purchased to replace the old pad printer in the carbon marking department. The new inkjet printer was introduced, but there was a problem with marking on small pipes of 1 1/2 inches. This research proposes a solution to the problem of clamping small, marked workpieces on reducers by developing a dedicated workpiece jigs. The results show that jigs significantly improves the case of workpiece removal and reduces disassembly time.In further stages of this work, the research endeavours can concentrate on further enhancing and refining the clamping devices to elevate their performance. That could involve optimizing the materials employed and adapting the design to accommodate a broader range of workpiece shapes.
3D printing of thermosets with diverse rheological and functional applicabilities
Thermosets such as silicone are ubiquitous. However, existing manufacturing of thermosets involves either a prolonged manufacturing cycle (e.g., reaction injection molding), low geometric complexity (e.g., casting), or limited processable materials (e.g., frontal polymerization). Here, we report an in situ dual heating (ISDH) strategy for the rapid 3D printing of thermosets with complex structures and diverse rheological properties by incorporating direct ink writing (DIW) technique and a heating-accelerated in situ gelation mechanism. Enabled by an integrated Joule heater at the printhead, extruded thermosetting inks can quickly cure in situ, allowing for DIW of various thermosets with viscosities spanning five orders of magnitude, printed height over 100 mm, and high resolution of 50 μm. We further demonstrate DIW of a set of heterogenous thermosets using multiple functional materials and present a hybrid printing of a multilayer soft electronic circuit. Our ISDH strategy paves the way for fast manufacturing of thermosets for various emerging fields. ‘Thermosets are ubiquitous but existing manufacturing of thermosets involves either a prolonged manufacturing cycle, low geometric complexity, or limited processable materials. Here, the authors report an in situ dual heating strategy for the rapid 3D printing of thermosets with complex structures and diverse rheological properties by incorporating direct ink writing (DIW) technique and a heating-accelerated in situ gelation mechanism
Screw-assisted 3D printing with granulated materials: a systematic review
This paper presents a systematic review on extrusion additive manufacturing (EAM), with focus on the technological development of screw-assisted systems that can be fed directly with granulated materials. Screw-assisted EAM has gained importance as an enabling technology to expand the range of 3D printing materials, reduce costs associated with feedstock fabrication, and increase the material deposition rate compared to traditional fused filament fabrication (FFF). Many experimental printheads and commercial systems that use some screw-processing mechanism can be found in the literature, but the design diversity and lack of standard terminology make it difficult to determine the most suitable solutions for a given material or application field. Besides, the few previous reviews have offered only a glimpse into the topic, without an in-depth analysis about the design of the extruders and associated capabilities. A systematic procedure was devised to identify the screw-assisted EAM systems that can print directly from granulated materials, resulting in 61 articles describing different pieces of equipment that were categorized as experimental printheads and commercial systems, for small- and large-scale applications. After describing their main characteristics, the most significant extruder modifications were discussed with reference to the materials processed and performance requirements. In the end, a general workflow for the development of 3D printers based on screw extrusion was proposed. This review intends to provide information about the state-of-the-art screw-assisted EAM and help the academy to identify further research opportunities in the field.
Digital forensics of printed source identification for Chinese characters
Recently, digital forensics, which involves the collection and analysis of the origin digital device, has become an important issue. Digital content can play a crucial role in identifying the source device, such as serve as evidence in court. To achieve this goal, we use different texture feature extraction methods such as graylevel co-occurrence matrix (GLCM) and discrete wavelet transform (DWT), to analyze the Chinese printed source in order to find the impact of different output devices. Furthermore, we also explore the optimum feature subset by using feature selection techniques and use support vector machine (SVM) to identify the source model of the documents. The average experimental results attain a 98.64 % identification rate which is significantly superior to the existing known method of GLCM by 1.27 %. The superior testing performance demonstrates that the proposed identification method is very useful for source laser printer identification.
Prediction of laser printers and cartridges based on three-dimensional profiles via discrimination analysis
Printer source prediction is an important task when examining questioned documents. While some research has provided methods to predict the source printer of documents, with the advent of compatible consumables, printer prediction could become more complex and difficult. Predicting the source printer after replacing cartridges and identifying the source of printer cartridges are unresolved issues that are rarely addressed in current research. Herein, we introduce a novel technique to predict the manufacturer, model, and cartridges of laser printers (i.e., compatible, and original cartridges) used to produce a given document. Document samples produced using eight laser printers and 247 cartridges were collected to establish a dataset. Common manufacturers included HP, Canon, Lenovo, and Epson. After obtaining white-light images and three-dimensional profile images of printed characters, a morphological analysis was conducted by questioned document examiners (QDEs) using microscopy. Microscopic image features across a series of images were also extracted and analyzed using algorithms. Then, six high-dimensional reduction algorithms were used to obtain between- and within-printer variations as well as between- and within-cartridge variations. Finally, we conducted principal component analysis (PCA) and discriminant analysis. For 40 % of the samples, mixed discrimination analysis (MDA) and fixed discrimination analysis (FDA) were employed to predict the manufacturer, model and cartridge of laser printers used to produce the questioned printed document; the remaining 60 % samples comprised the training dataset. In the prediction of manufacturer, model and cartridge, our method achieved mean accuracies of 95.5 %, 97.5 %, and 90.2 %, respectively. Hence, this technique could reasonably aid in predicting the manufacturer, model, and cartridge of a laser printer, even if different cartridges are loaded into printers. [Display omitted] •A novel technique was provided to predict the manufacturer, model, and cartridges of laser printers.•Three-dimensional profiling combined with white-light microscopic images helps to improve the performance of the prediction.•This paper expands document examination from two dimensions to three dimensions.
Drop impact printing
Hydrodynamic collapse of a central air-cavity during the recoil phase of droplet impact on a superhydrophobic sieve leads to satellite-free generation of a single droplet through the sieve. Two modes of cavity formation and droplet ejection have been observed and explained. The volume of the generated droplet scales with the pore size. Based on this phenomenon, we propose a drop-on-demand printing technique. Despite significant advancements in inkjet technology, enhancement in mass-loading and particle-size have been limited due to clogging of the printhead nozzle. By replacing the nozzle with a sieve, we demonstrate printing of nanoparticle suspension with 71% mass-loading. Comparatively large particles of 20 μm diameter are dispensed in droplets of ~80 μm diameter. Printing is performed for surface tension as low as 32 mNm −1 and viscosity as high as 33 mPa∙s. In comparison to existing techniques, this way of printing is widely accessible as it is significantly simple and economical. Printing small droplets for a wide range of applications remains a challenge. Here, the authors propose a simple drop-on-demand printing technique which replaces the use of a nozzle with a sieve, enabling printing of nanoparticle suspension with 71% mass-loading, performed for surface tension range of 72–32 mNm-1 and viscosity up to 33 mPas.