Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
329,367 result(s) for "Probabilities."
Sort by:
One-dimensional empirical measures, order statistics, and Kantorovich transport distances
This work is devoted to the study of rates of convergence of the empirical measures \\mu_{n} = \\frac {1}{n} \\sum_{k=1}^n \\delta_{X_k}, n \\geq 1, over a sample (X_{k})_{k \\geq 1} of independent identically distributed real-valued random variables towards the common distribution \\mu in Kantorovich transport distances W_p. The focus is on finite range bounds on the expected Kantorovich distances \\mathbb{E}(W_{p}(\\mu_{n},\\mu )) or \\big [ \\mathbb{E}(W_{p}^p(\\mu_{n},\\mu )) \\big ]^1/p in terms of moments and analytic conditions on the measure \\mu and its distribution function. The study describes a variety of rates, from the standard one \\frac {1}{\\sqrt n} to slower rates, and both lower and upper-bounds on \\mathbb{E}(W_{p}(\\mu_{n},\\mu )) for fixed n in various instances. Order statistics, reduction to uniform samples and analysis of beta distributions, inverse distribution functions, log-concavity are main tools in the investigation. Two detailed appendices collect classical and some new facts on inverse distribution functions and beta distributions and their densities necessary to the investigation.
Additive Differentials for ARX Mappings with ProbabilityExceeding 1/4
We consider the additive differential probabilities of functions and , where and . The probabilities are used for the differential cryptanalysis of ARX ciphers that operate only with addition modulo , bitwise XOR ( ), and bit rotations ( ). A complete characterization of differentials whose probability exceeds is obtained. All possible values of their probabilities are for . We describe differentials with each of these probabilities and calculate the number of these values. We also calculate the number of all considered differentials. It is for and for , where . We compare differentials of both mappings under the given constraint.
The Pseudo-Marginal Approach for Efficient Monte Carlo Computations
We introduce a powerful and flexible MCMC algorithm for stochastic simulation. The method builds on a pseudo-marginal method originally introduced in [Genetics 164 (2003) 1139-1160], showing how algorithms which are approximations to an idealized marginal algorithm, can share the same marginal stationary distribution as the idealized method. Theoretical results are given describing the convergence properties of the proposed method, and simple numerical examples are given to illustrate the promising empirical characteristics of the technique. Interesting comparisons with a more obvious, but inexact, Monte Carlo approximation to the marginal algorithm, are also given.