Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
166,458
result(s) for
"Probability and statistics"
Sort by:
Business analytics using R - A practical approach
Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictive analytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. You will:? Write R programs to handle data? Build analytical models and draw useful inferences from them? Discover the basic concepts of data mining and machine learning? Carry out predictive modeling? Define a business issue as an analytical problem.
Symmetric Markov processes, time change, and boundary theory
by
Masatoshi Fukushima
,
Zhen-Qing Chen
in
Absolute continuity
,
Bilinear form
,
Borel right process
2011,2012
This book gives a comprehensive and self-contained introduction to the theory of symmetric Markov processes and symmetric quasi-regular Dirichlet forms. In a detailed and accessible manner, Zhen-Qing Chen and Masatoshi Fukushima cover the essential elements and applications of the theory of symmetric Markov processes, including recurrence/transience criteria, probabilistic potential theory, additive functional theory, and time change theory. The authors develop the theory in a general framework of symmetric quasi-regular Dirichlet forms in a unified manner with that of regular Dirichlet forms, emphasizing the role of extended Dirichlet spaces and the rich interplay between the probabilistic and analytic aspects of the theory. Chen and Fukushima then address the latest advances in the theory, presented here for the first time in any book. Topics include the characterization of time-changed Markov processes in terms of Douglas integrals and a systematic account of reflected Dirichlet spaces, and the important roles such advances play in the boundary theory of symmetric Markov processes.
This volume is an ideal resource for researchers and practitioners, and can also serve as a textbook for advanced graduate students. It includes examples, appendixes, and exercises with solutions.
The Pseudo-Marginal Approach for Efficient Monte Carlo Computations
2009
We introduce a powerful and flexible MCMC algorithm for stochastic simulation. The method builds on a pseudo-marginal method originally introduced in [Genetics 164 (2003) 1139-1160], showing how algorithms which are approximations to an idealized marginal algorithm, can share the same marginal stationary distribution as the idealized method. Theoretical results are given describing the convergence properties of the proposed method, and simple numerical examples are given to illustrate the promising empirical characteristics of the technique. Interesting comparisons with a more obvious, but inexact, Monte Carlo approximation to the marginal algorithm, are also given.
Journal Article
Log-gases and random matrices
2010
Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years.Log-Gases and Random Matricesgives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials.
Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painlevé transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory. This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, makingLog-Gases and Random Matricesan indispensable reference work, as well as a learning resource for all students and researchers in the field.
Spatial and spatio-temporal bayesian models with R-INLA
by
Blangiardo, Marta
,
Cameletti, Michela
in
Asymptotic distribution (Probability theory)
,
Bayesian Analysis
,
Bayesian statistical decision theory
2015
Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations
Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity
2011
We adapt the expectation-maximization algorithm to incorporate unobserved heterogeneity into conditional choice probability (CCP) estimators of dynamic discrete choice problems. The unobserved heterogeneity can be time-invariant or follow a Markov chain. By developing a class of problems where the difference in future value terms depends on a few conditional choice probabilities, we extend the class of dynamic optimization problems where CCP estimators provide a computationally cheap alternative to full solution methods. Monte Carlo results confirm that our algorithms perform quite well, both in terms of computational time and in the precision of the parameter estimates.
Journal Article
An introduction to discrete-valued time series
by
Weiss, Christian H
in
Discrete-time systems
,
Discrete-time systems-Mathematical models
,
MATHEMATICS
2018
A much-needed introduction to the field of discrete-valued time series, with a focus on count-data time series Time series analysis is an essential tool in a wide array of fields, including business, economics, computer science, epidemiology, finance, manufacturing and meteorology, to name just a few. Despite growing interest in discrete-valued time series—especially those arising from counting specific objects or events at specified times—most books on time series give short shrift to that increasingly important subject area. This book seeks to rectify that state of affairs by providing a much needed introduction to discrete-valued time series, with particular focus on count-data time series. The main focus of this book is on modeling. Throughout numerous examples are provided illustrating models currently used in discrete-valued time series applications. Statistical process control, including various control charts (such as cumulative sum control charts), and performance evaluation are treated at length. Classic approaches like ARMA models and the Box-Jenkins program are also featured with the basics of these approaches summarized in an Appendix. In addition, data examples, with all relevant R code, are available on a companion website. • Provides a balanced presentation of theory and practice, exploring both categorical and integer-valued series • Covers common models for time series of counts as well as for categorical time series, and works out their most important stochastic properties • Addresses statistical approaches for analyzing discrete-valued time series and illustrates their implementation with numerous data examples • Covers classical approaches such as ARMA models, Box-Jenkins program and how to generate functions • Includes dataset examples with all necessary R code provided on a companion website An Introduction to Discrete-Valued Time Series is a valuable working resource for researchers and practitioners in a broad range of fields, including statistics, data science, machine learning, and engineering. It will also be of interest to postgraduate students in statistics, mathematics and economics.
Sequential Monte Carlo samplers
by
Doucet, Arnaud
,
Del Moral, Pierre
,
Jasra, Ajay
in
Algorithms
,
Approximation
,
Bayesian analysis
2006
We propose a methodology to sample sequentially from a sequence of probability distributions that are defined on a common space, each distribution being known up to a normalizing constant. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time by using sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make parallel Markov chain Monte Carlo algorithms interact to perform global optimization and sequential Bayesian estimation and to compute ratios of normalizing constants. We illustrate these algorithms for various integration tasks arising in the context of Bayesian inference.
Journal Article
explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
by
Lindström, Johan
,
Lindgren, Finn
,
Rue, Håvard
in
Algorithms
,
Analysis of covariance
,
Approximate Bayesian inference
2011
Continuously indexed Gaussian fields (GFs) are the most important ingredient in spatial statistical modelling and geostatistics. The specification through the covariance function gives an intuitive interpretation of the field properties. On the computational side, GFs are hampered with the big n problem, since the cost of factorizing dense matrices is cubic in the dimension. Although computational power today is at an all time high, this fact seems still to be a computational bottleneck in many applications. Along with GFs, there is the class of Gaussian Markov random fields (GMRFs) which are discretely indexed. The Markov property makes the precision matrix involved sparse, which enables the use of numerical algorithms for sparse matrices, that for fields in only use the square root of the time required by general algorithms. The specification of a GMRF is through its full conditional distributions but its marginal properties are not transparent in such a parameterization. We show that, using an approximate stochastic weak solution to (linear) stochastic partial differential equations, we can, for some GFs in the Matérn class, provide an explicit link, for any triangulation of , between GFs and GMRFs, formulated as a basis function representation. The consequence is that we can take the best from the two worlds and do the modelling by using GFs but do the computations by using GMRFs. Perhaps more importantly, our approach generalizes to other covariance functions generated by SPDEs, including oscillating and non-stationary GFs, as well as GFs on manifolds. We illustrate our approach by analysing global temperature data with a non-stationary model defined on a sphere.
Journal Article
Stationary stochastic processes : theory and applications
by
Lindgren, Georg
in
Matematik
,
Mathematical Sciences
,
MATHEMATICS / Probability & Statistics / Bayesian Analysis. bisacsh
2013,2012
In recent years, applications of advanced stochastic processes have expanded greatly. Intended for students taking a second course in stochastic processes, this textbook presents an overview of theory with applications in engineering and science. This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics for the teacher to expand on, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory.