Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Probit posterior simulation"
Sort by:
The normal law under linear restrictions: simulation and estimation via minimax tilting
2017
Simulation from the truncated multivariate normal distribution in high dimensions is a recurrent problem in statistical computing and is typically only feasible by using approximate Markov chain Monte Carlo sampling. We propose a minimax tilting method for exact independently and identically distributed data simulation from the truncated multivariate normal distribution. The new methodology provides both a method for simulation and an efficient estimator to hitherto intractable Gaussian integrals. We prove that the estimator has a rare vanishing relative error asymptotic property. Numerical experiments suggest that the scheme proposed is accurate in a wide range of set-ups for which competing estimation schemes fail. We give an application to exact independently and identically distributed data simulation from the Bayesian posterior of the probit regression model.
Journal Article
Flexible generalized t-link models for binary response data
by
Dey, Dipak K.
,
Kim, Sungduk
,
Chen, Ming-Hui
in
Applications
,
Biology, psychology, social sciences
,
Cancer
2008
A critical issue in modelling binary response data is the choice of the links. We introduce a new link based on the generalized t-distribution. There are two parameters in the generalized t-link: one parameter purely controls the heaviness of the tails of the link and the second parameter controls the scale of the link. Two major advantages are offered by the generalized t-links. First, a symmetric generalized t-link with an unknown shape parameter is much more identifiable than a Student t-link with unknown degrees of freedom and a known scale parameter. Secondly, skewed generalized t-links with both unknown shape and scale parameters provide much more flexible and improved skewed link regression models than the existing skewed links. Various theoretical properties and attractive features of the proposed links are examined and explored in detail. An efficient Markov chain Monte Carlo algorithm is developed for sampling from the posterior distribution. The deviance information criterion measure is used for guiding the choice of links. The proposed methodology is motivated and illustrated by prostate cancer data.
Journal Article
Multivariate regression analysis of panel data with binary outcomes applied to unemployment data
2000
In panel studies binary outcome measures together with time stationary and time varying explanatory variables are collected over time on the same individual. Therefore, a regression analysis for this type of data must allow for the correlation among the outcomes of an individual. The multivariate probit model of Ashford and Sowden (1970) was the first regression model for multivariate binary responses. However, a likelihood analysis of the multivariate probit model with general correlation structure for higher dimensions is intractable due to the maximization over high dimensional integrals thus severely restricting ist applicability so far. Czado (1996) developed a Markov Chain Monte Carlo (MCMC) algorithm to overcome this difficulty. In this paper we present an application of this algorithm to unemployment data from the Panel Study of Income Dynamics involving 11 waves of the panel study. In addition we adapt Bayesian model checking techniques based on the posterior predictive distribution (see for example Gelman et al. (1996)) for the multivariate probit model. These help to identify mean and correlation specification which fit the data well. [PUBLICATION ABSTRACT]
Journal Article