Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,888
result(s) for
"Prodrugs - pharmacology"
Sort by:
Hypoxia-Activated Prodrug Derivatives of Carbonic Anhydrase Inhibitors in Benzenesulfonamide Series: Synthesis and Biological Evaluation
by
Anduran, Emilie
,
Parkkila, Seppo
,
Bua, Silvia
in
Antibiotics
,
Antigens, Neoplasm - genetics
,
Benzenesulfonamides
2020
Hypoxia, a common feature of solid tumours’ microenvironment, is associated with an aggressive phenotype and is known to cause resistance to anticancer chemo- and radiotherapies. Tumour-associated carbonic anhydrases isoform IX (hCA IX), which is upregulated under hypoxia in many malignancies participating to the microenvironment acidosis, represents a valuable target for drug strategy against advanced solid tumours. To overcome cancer cell resistance and improve the efficacy of therapeutics, the use of bio-reducible prodrugs also known as Hypoxia-activated prodrugs (HAPs), represents an interesting strategy to be applied to target hCA IX isozyme through the design of selective carbonic anhydrase IX inhibitors (CAIs). Here, we report the design, synthesis and biological evaluations including CA inhibition assays, toxicity assays on zebrafish and viability assays on human cell lines (HT29 and HCT116) of new HAP-CAIs, harboring different bio-reducible moieties in nitroaromatic series and a benzenesulfonamide warhead to target hCA IX. The CA inhibition assays of this compound series showed a slight selectivity against hCA IX versus the cytosolic off-target hCA II and hCA I isozymes. Toxicity and viability assays have highlighted that the compound bearing the 2-nitroimidazole moiety possesses the lowest toxicity (LC50 of 1400 µM) and shows interesting results on viability assays.
Journal Article
Bioorthogonal catalytic patch
2021
Bioorthogonal catalysis mediated by transition metals has inspired a new subfield of artificial chemistry complementary to enzymatic reactions, enabling the selective labelling of biomolecules or in situ synthesis of bioactive agents via non-natural processes. However, the effective deployment of bioorthogonal catalysis in vivo remains challenging, mired by the safety concerns of metal toxicity or complicated procedures to administer catalysts. Here, we describe a bioorthogonal catalytic device comprising a microneedle array patch integrated with Pd nanoparticles deposited on TiO2 nanosheets. This device is robust and removable, and can mediate the local conversion of caged substrates into their active states in high-level living systems. In particular, we show that such a patch can promote the activation of a prodrug at subcutaneous tumour sites, restoring its parent drug’s therapeutic anticancer properties. This in situ applied device potentiates local treatment efficacy and eliminates off-target prodrug activation and dose-dependent side effects in healthy organs or distant tissues.The toxicity and complicated administration procedures of transition metal catalysts have hampered the applications of bioorthogonal catalysis in vivo. Here the authors fill the needles of a microneedle array patch with palladium nanoparticles deposited on titanium nanosheets and show that the device, applied locally on the skin of mouse models bearing melanoma, promotes intratumoural conversion of systemically injected caged doxorubicin into the active drug, reducing its toxicity and side effects.
Journal Article
Galacto‐conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity
by
Rovira, Miguel
,
Martins, Carla P.
,
Pàez‐Ribes, Marta
in
Aniline Compounds - chemistry
,
Aniline Compounds - pharmacology
,
Animal models
2020
Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence‐associated lysosomal β‐galactosidase (SA‐β‐gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose‐encapsulated nanoparticles within these cells. Here, we show that galacto‐conjugation of the BCL‐2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav‐Gal), that can be preferentially activated by SA‐β‐gal activity in a wide range of cell types. Nav‐Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav‐Gal enhances the cytotoxicity of standard senescence‐inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav‐Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto‐conjugation reduces Navitoclax‐induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities.
We have developed a galactose‐conjugated derivative of Navitoclax (Nav‐Gal) with a broad‐spectrum senolytic activity. We show that Nav‐Gal efficiently kills chemotherapy‐induced senescent cells in xenografts and orthotopic in vivo models of NSCLC, resulting in impaired tumour progression. Importantly, our prodrug prevents Navitoclax‐induced platelet apoptosis in human samples and murine models. In summary, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities.
Journal Article
Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys
by
Braun, Molly R.
,
Barauskas, Ona
,
Chen, Shan-Shan
in
631/154/433
,
631/326/596/2555
,
692/308/153
2016
The discovery is reported of a small molecule drug, GS-5734, which has antiviral activity against Ebola virus and other filoviruses, and is capable of providing post-exposure therapeutic protection against lethal disease in 100% of drug-treated nonhuman primates infected with Ebola virus; the drug targets viral RNA polymerase and can distribute to sanctuary sites (such as testes, eyes and brain), suggesting that it may be able to clear persistent virus infection.
A drug active against Ebola virus
These authors report the discovery of a small-molecule drug, GS-5734, which has antiviral activity against Ebola and other filoviruses, and is capable of providing post-exposure protection against Ebola virus in 100% of infected macaques tested. Now in clinical trials (
http://go.nature.com/PEW2Oi
), the drug targets the viral RNA-dependent RNA polymerase and is readily scalable for future outbreaks. GS-5734 is able to distribute to sanctuary sites for viral replication including the testes, eye and brain, offering the hope that this drug may also be able to clear recrudescent and persistent virus infection.
The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae
1
. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734
in vitro
, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg
−1
GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734
in vitro
against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.
Journal Article
Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer
2021
Patients with primary and bone metastatic breast cancer have significantly reduced survival and life quality. Due to the poor drug delivery efficiency of anti-metastasis therapy and the limited response rate of immunotherapy for breast cancer, effective treatment remains a formidable challenge. In this work, engineered macrophages (Oxa(IV)@ZnPc@M) carrying nanomedicine containing oxaliplatin prodrug and photosensitizer are designed as near-infrared (NIR) light-activated drug vectors, aiming to achieve enhanced chemo/photo/immunotherapy of primary and bone metastatic tumors. Oxa(IV)@ZnPc@M exhibits an anti-tumor M1 phenotype polarization and can efficiently home to primary and bone metastatic tumors. Additionally, therapeutics inside Oxa(IV)@ZnPc@M undergo NIR triggered release, which can kill primary tumors via combined chemo-photodynamic therapy and induce immunogenic cell death simultaneously. Oxa(IV)@ZnPc@M combined with anti-PD-L1 can eliminate primary and bone metastatic tumors, activate tumor-specific antitumor immune response, and improve overall survival with limited systemic toxicity. Therefore, this all-in-one macrophage provides a treatment platform for effective therapy of primary and bone metastatic tumors.
Bone metastases are associated with poor prognosis in patients with breast cancer and limited therapeutic options. Here the authors exploit near-infrared light responsive macrophages for the tumor-selective delivery of oxaliplatin prodrug for chemo-photodynamic therapy of primary and bone metastatic breast cancer.
Journal Article
Sophisticated natural products as antibiotics
by
Lee, Richard E.
,
Hiller, Sebastian
,
Schneider, Tanja
in
45/23
,
631/326/22/1290
,
639/638/92/609
2024
In this Review, we explore natural product antibiotics that do more than simply inhibit an active site of an essential enzyme. We review these compounds to provide inspiration for the design of much-needed new antibacterial agents, and examine the complex mechanisms that have evolved to effectively target bacteria, including covalent binders, inhibitors of resistance, compounds that utilize self-promoted entry, those that evade resistance, prodrugs, target corrupters, inhibitors of ‘undruggable’ targets, compounds that form supramolecular complexes, and selective membrane-acting agents. These are exemplified by β-lactams that bind covalently to inhibit transpeptidases and β-lactamases, siderophore chimeras that hijack import mechanisms to smuggle antibiotics into the cell, compounds that are activated by bacterial enzymes to produce reactive molecules, and antibiotics such as aminoglycosides that corrupt, rather than merely inhibit, their targets. Some of these mechanisms are highly sophisticated, such as the preformed β-strands of darobactins that target the undruggable β-barrel chaperone BamA, or teixobactin, which binds to a precursor of peptidoglycan and then forms a supramolecular structure that damages the membrane, impeding the emergence of resistance. Many of the compounds exhibit more than one notable feature, such as resistance evasion and target corruption. Understanding the surprising complexity of the best antimicrobial compounds provides a roadmap for developing novel compounds to address the antimicrobial resistance crisis by mining for new natural products and inspiring us to design similarly sophisticated antibiotics.
This Review examines the diverse strategies utilized by naturally occurring antibiotics and suggests how they have provided, and will in future provide, inspiration for the design of novel antibiotics.
Journal Article
The landscape of small-molecule prodrugs
2024
Prodrugs are derivatives with superior properties compared with the parent active pharmaceutical ingredient (API), which undergo biotransformation after administration to generate the API in situ. Although sharing this general characteristic, prodrugs encompass a wide range of different chemical structures, therapeutic indications and properties. Here we provide the first holistic analysis of the current landscape of approved prodrugs using cheminformatics and data science approaches to reveal trends in prodrug development. We highlight rationales that underlie prodrug design, their indications, mechanisms of API release, the chemistry of promoieties added to APIs to form prodrugs and the market impact of prodrugs. On the basis of this analysis, we discuss strengths and limitations of current prodrug approaches and suggest areas for future development.The development of prodrugs — derivatives of active pharmaceutical ingredients (APIs) with little or no biological activity themselves that are converted into the API after administration — can address issues with properties of the API such as poor bioavailability. This article provides a holistic analysis of approved prodrugs and discusses trends in prodrug design, their indications, mechanisms of API release and the chemistry of promoieties added to APIs to form prodrugs.
Journal Article
GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses
2017
GS-5734 is a monophosphate prodrug of an adenosine nucleoside analog that showed therapeutic efficacy in a non-human primate model of Ebola virus infection. It has been administered under compassionate use to two Ebola patients, both of whom survived, and is currently in Phase 2 clinical development for treatment of Ebola virus disease. Here we report the antiviral activities of GS-5734 and the parent nucleoside analog across multiple virus families, providing evidence to support new indications for this compound against human viruses of significant public health concern.
Journal Article
Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy
Hypoxia-based agents (HBAs), such as anaerobic bacteria and bioreductive prodrugs, require both a permeable and hypoxic intratumoural environment to be fully effective. To solve this problem, herein, we report that perfluorocarbon nanoparticles (PNPs) can be used to create a long-lasting, penetrable and hypoxic tumour microenvironment for ensuring both the delivery and activation of subsequently administered HBAs. In addition to the increased permeability and enhanced hypoxia caused by the PNPs, the PNPs can be retained to further achieve the long-term inhibition of intratumoural O
2
reperfusion while enhancing HBA accumulation for over 24 h. Therefore, perfluorocarbon materials may have great potential for reigniting clinical research on hypoxia-based drugs.
Hypoxia-based agents need permeable and hypoxic intratumour environment to be effective. Here, the authors show that perfluorocarbon nanoparticles promote increased permeability and sustained hypoxia to improve accumulation of hypoxia-based agents, and inhibit intratumour oxygen reperfusion.
Journal Article
Recent Advances in the Chemical Synthesis and Evaluation of Anticancer Nucleoside Analogues
by
Benckendorff, Caecilie
,
Guinan, Mieke
,
Smith, Mark
in
Adenosine - analogs & derivatives
,
Adenosine - chemical synthesis
,
Adenosine - pharmacology
2020
Nucleoside analogues have proven to be highly successful chemotherapeutic agents in the treatment of a wide variety of cancers. Several such compounds, including gemcitabine and cytarabine, are the go-to option in first-line treatments. However, these materials do have limitations and the development of next generation compounds remains a topic of significant interest and necessity. Herein, we discuss recent advances in the chemical synthesis and biological evaluation of nucleoside analogues as potential anticancer agents. Focus is paid to 4′-heteroatom substitution of the furanose oxygen, 2′-, 3′-, 4′- and 5′-position ring modifications and the development of new prodrug strategies for these materials.
Journal Article