Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
72,154 result(s) for "Programming language"
Sort by:
The Rust programming language
\"The official guide to Rust, a community-developed, systems programming language. Begins with a hands-on project to introduce the basics, then explores key concepts in depth\"-- Provided by publisher.
AIBugHunter: A Practical tool for predicting, classifying and repairing software vulnerabilities
Many Machine Learning(ML)-based approaches have been proposed to automatically detect, localize, and repair software vulnerabilities. While ML-based methods are more effective than program analysis-based vulnerability analysis tools, few have been integrated into modern Integrated Development Environments (IDEs), hindering practical adoption. To bridge this critical gap, we propose in this article AIBugHunter, a novel Machine Learning-based software vulnerability analysis tool for C/C++ languages that is integrated into the Visual Studio Code (VS Code) IDE. AIBugHunter helps software developers to achieve real-time vulnerability detection, explanation, and repairs during programming. In particular, AIBugHunter scans through developers’ source code to (1) locate vulnerabilities, (2) identify vulnerability types, (3) estimate vulnerability severity, and (4) suggest vulnerability repairs. We integrate our previous works (i.e., LineVul and VulRepair) to achieve vulnerability localization and repairs. In this article, we propose a novel multi-objective optimization (MOO)-based vulnerability classification approach and a transformer-based estimation approach to help AIBugHunter accurately identify vulnerability types and estimate severity. Our empirical experiments on a large dataset consisting of 188K+ C/C++ functions confirm that our proposed approaches are more accurate than other state-of-the-art baseline methods for vulnerability classification and estimation. Furthermore, we conduct qualitative evaluations including a survey study and a user study to obtain software practitioners’ perceptions of our AIBugHunter tool and assess the impact that AIBugHunter may have on developers’ productivity in security aspects. Our survey study shows that our AIBugHunter is perceived as useful where 90% of the participants consider adopting our AIBugHunter during their software development. Last but not least, our user study shows that our AIBugHunter can enhance developers’ productivity in combating cybersecurity issues during software development. AIBugHunter is now publicly available in the Visual Studio Code marketplace.
The Rust programming language
\"The official guide to Rust, a community-developed, systems programming language. Begins with a hands-on project to introduce the basics, then explores key concepts in depth\"-- Provided by publisher.
Programming Language Cultures
\"In this book, Brian Lennon demonstrates the power of a philological approach to the history of programming languages and their usage cultures. In chapters focused on specific programming languages such as SNOBOL and JavaScript, as well as on code comments, metasyntactic variables, the very early history of programming, and the concept of DevOps, Lennon emphasizes the histories of programming languages in their individual specificities over their abstract formal or structural characteristics, viewing them as carriers and sometimes shapers of specific cultural histories. The book's philological approach to programming languages presents a natural, sensible, and rigorous way for researchers trained in the humanities to perform research on computing in a way that draws on their own expertise. Combining programming knowledge with a humanistic analysis of the social and historical dimensions of computing, Lennon offers researchers in literar
Code your own games : 20 games to create with Scratch
With the help of robots and step-by-step instructions, this book provides all the code needed to build, play, and share 20 games using Scratch. The games are split across five difficulty levels.
Practical Foundations for Programming Languages
Types are the central organizing principle of the theory of programming languages. In this innovative book, Professor Robert Harper offers a fresh perspective on the fundamentals of these languages through the use of type theory. Whereas most textbooks on the subject emphasize taxonomy, Harper instead emphasizes genetics, examining the building blocks from which all programming languages are constructed. Language features are manifestations of type structure. The syntax of a language is governed by the constructs that define its types, and its semantics is determined by the interactions among those constructs. The soundness of a language design – the absence of ill-defined programs – follows naturally. Professor Harper's presentation is simultaneously rigorous and intuitive, relying on elementary mathematics. The framework he outlines scales easily to a rich variety of language concepts and is directly applicable to their implementation. The result is a lucid introduction to programming theory that is both accessible and practical.
Probabilistic (logic) programming concepts
A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been considered for over 20 years.
Array programming with NumPy
Array programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves 1 and in the first imaging of a black hole 2 . Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis. NumPy is the primary array programming library for Python; here its fundamental concepts are reviewed and its evolution into a flexible interoperability layer between increasingly specialized computational libraries is discussed.