Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
59,483 result(s) for "Projections"
Sort by:
Secant Cylinders Are Evil—A Case Study on the Standard Lines of the Universal Transverse Mercator and Universal Polar Stereographic Projections
The literature usually calls downscaled versions of basic conformal map projections “secant”, referring to conceptual developable map surfaces that intersect the reference frame. However, recent studies pointed out on the examples of various mappings of the sphere that this model may lead to incorrect conclusions. In this study, we examine the paradigm of secant surfaces for two popular map projections of the ellipsoid, the UTM (Universal Transverse Mercator) and the UPS (Universal Polar Stereographic) projections. Results will show that ellipsoidal map projections can exhibit further anomalies. To support the shift to a paradigm avoiding developable map surfaces, this study recommends the new term reduced map projection with a proper and simple definition to be used instead of secant map projections.
Random-projection ensemble classification
We introduce a very general method for high dimensional classification, based on careful combination of the results of applying an arbitrary base classifier to random projections of the feature vectors into a lower dimensional space. In one special case that we study in detail, the random projections are divided into disjoint groups, and within each group we select the projection yielding the smallest estimate of the test error. Our random-projection ensemble classifier then aggregates the results of applying the base classifier on the selected projections, with a data-driven voting threshold to determine the final assignment. Our theoretical results elucidate the effect on performance of increasing the number of projections. Moreover, under a boundary condition that is implied by the sufficient dimension reduction assumption, we show that the test excess risk of the random-projection ensemble classifier can be controlled by terms that do not depend on the original data dimension and a term that becomes negligible as the number of projections increases. The classifier is also compared empirically with several other popular high dimensional classifiers via an extensive simulation study, which reveals its excellent finite sample performance.
Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways
The projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatially explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.
LOCAL PROJECTION INFERENCE IS SIMPLER AND MORE ROBUST THAN YOU THINK
Applied macroeconomists often compute confidence intervals for impulse responses using local projections, that is, direct linear regressions of future outcomes on current covariates. This paper proves that local projection inference robustly handles two issues that commonly arise in applications: highly persistent data and the estimation of impulse responses at long horizons. We consider local projections that control for lags of the variables in the regression. We show that lag-augmented local projections with normal critical values are asymptotically valid uniformly over (i) both stationary and non-stationary data, and also over (ii) a wide range of response horizons. Moreover, lag augmentation obviates the need to correct standard errors for serial correlation in the regression residuals. Hence, local projection inference is arguably both simpler than previously thought and more robust than standard autoregressive inference, whose validity is known to depend sensitively on the persistence of the data and on the length of the horizon.
Demographic perspectives in research on global environmental change
The human population is at the centre of research on global environmental change. On the one hand, population dynamics influence the environment and the global climate system through consumption-based carbon emissions. On the other hand, the health and well-being of the population are already being affected by climate change. A knowledge of population dynamics and population heterogeneity is thus fundamental to improving our understanding of how population size, composition, and distribution influence global environmental change and how these changes affect population subgroups differentially by demographic characteristics and spatial distribution. The increasing relevance of demographic research on the topic, coupled with availability of theoretical concepts and advancement in data and computing facilities, has contributed to growing engagement of demographers in this field. In the past 25 years, demographic research has enriched climate change research-with the key contribution being in moving beyond the narrow view that population matters only in terms of population size-by putting a greater emphasis on population composition and distribution, through presenting both empirical evidence and advanced population forecasting to account for demographic and spatial heterogeneity. What remains missing in the literature is research that investigates how global environmental change affects current and future demographic processes and, consequently, population trends. If global environmental change does influence fertility, mortality, and migration, then population estimates and forecasts need to adjust for climate feedback in population projections. Indisputably, this is the area of new research that directly requires expertise in population science and contribution from demographers.
LOCAL PROJECTIONS AND VARS ESTIMATE THE SAME IMPULSE RESPONSES
We prove that local projections (LPs) and Vector Autoregressions (VARs) estimate the same impulse responses. This nonparametric result only requires unrestricted lag structures. We discuss several implications: (i) LP and VAR estimators are not conceptually separate procedures; instead, they are simply two dimension reduction techniques with common estimand but different finite-sample properties. (ii) VAR-based structural identification—including short-run, long-run, or sign restrictions—can equivalently be performed using LPs, and vice versa. (iii) Structural estimation with an instrument (proxy) can be carried out by ordering the instrument first in a recursive VAR, even under noninvertibility. (iv) Linear VARs are as robust to nonlinearities as linear LPs.
A comprehensive excitatory input map of the striatum reveals novel functional organization
The striatum integrates excitatory inputs from the cortex and the thalamus to control diverse functions. Although the striatum is thought to consist of sensorimotor, associative and limbic domains, their precise demarcations and whether additional functional subdivisions exist remain unclear. How striatal inputs are differentially segregated into each domain is also poorly understood. This study presents a comprehensive map of the excitatory inputs to the mouse striatum. The input patterns reveal boundaries between the known striatal domains. The most posterior striatum likely represents the 4th functional subdivision, and the dorsomedial striatum integrates highly heterogeneous, multimodal inputs. The complete thalamo-cortico-striatal loop is also presented, which reveals that the thalamic subregions innervated by the basal ganglia preferentially interconnect with motor-related cortical areas. Optogenetic experiments show the subregion-specific heterogeneity in the synaptic properties of striatal inputs from both the cortex and the thalamus. This projectome will guide functional studies investigating diverse striatal functions. To fully understand how the brain works, we need to understand how different brain structures are organized and how information flows between these structures. For example, the cortex and thalamus communicate with another structure known as the basal ganglia, which is essential for controlling voluntary movement, emotions and reward behaviour in humans and other mammals. Information from the cortex and the thalamus enters the basal ganglia at an area called the striatum. This area is further divided into smaller functional regions known as domains that sort sensorimotor, emotion and executive information into the basal ganglia to control different types of behaviour. Three such domains have been identified in the striatum of mice. However, the boundaries between these domains are vague and it is not clear whether any other domains exist or if the domains can actually be divided into even smaller areas with more precise roles. Information entering the striatum from other parts of the brain can either stimulate activity in the striatum (known as an “excitatory input”) or alter existing excitatory inputs. Now, Hunnicutt et al. present the first comprehensive map of excitatory inputs into the striatum of mice. The experiments show that while many of the excitatory inputs flowing into the striatum from the cortex and thalamus are sorted into the three known domains, a unique combination of the excitatory inputs are sorted into a new domain instead. One of the original three domains of the striatum is known to relay information related to associative learning, for example, linking an emotion to a person or place. Hunnicutt et al. show that this domain has a more complex architecture than the other domains, being made up of many distinct areas. This complexity may help it to process the various types of information required to make such associations. The findings of Hunnicutt et al. provide a framework for understanding how the striatum works in healthy and diseased brains. Since faulty information processing in the striatum is a direct cause of Parkinson’s disease, Huntington’s disease and other neurological disorders in humans, this framework may aid the development of new treatments for these disorders.
Probabilistic County-Level Population Projections
Population projections provide predictions of future population sizes for an area. Historically, most population projections have been produced using deterministic or scenario-based approaches and have not assessed uncertainty about future population change. Starting in 2015, however, the United Nations (UN) has produced probabilistic population projections for all countries using a Bayesian approach. There is also considerable interest in subnational probabilistic population projections, but the UN's national approach cannot be used directly for this purpose, because within-country correlations in fertility and mortality are generally larger than between-country ones, migration is not constrained in the same way, and there is a need to account for college and other special populations, particularly at the county level. We propose a Bayesian method for producing subnational population projections, including migration and accounting for college populations, by building on but modifying the UN approach. We illustrate our approach by applying it to the counties of Washington State and comparing the results with extant deterministic projections produced by Washington State demographers. Out-of-sample experiments show that our method gives accurate and well-calibrated forecasts and forecast intervals. In most cases, our intervals were narrower than the growth-based intervals issued by the state, particularly for shorter time horizons.