Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
61
result(s) for
"Prokelisia"
Sort by:
Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies
by
Huberty, A.F
,
Denno, R.F
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Animals
2006
Phytophagous insects have a much higher nitrogen and phosphorus content than their host plants, an elemental mismatch that places inherent constraints on meeting nutritional requirements. Although nitrogen limitation is well documented in insect herbivores, phosphorus limitation is poorly studied. Using factorial experiments in the laboratory and field, in which levels of soil nitrogen and phosphorus were manipulated, we studied the relative consequences of macronutrient limitation for two herbivores, namely the phloem-feeding planthoppers Prokelisia dolus and P. marginata. These planthoppers inhabit the salt marshes of North America where large stands of their Spartina host plant are found. Notably, these congeners differ in their dispersal abilities; P. marginata is dispersive whereas P. dolus is sedentary. Both nitrogen and phosphorus subsidies enhanced the nitrogen and phosphorus content of Spartina. When P. dolus and P. marginata were raised on plants with an enriched nitrogen signature, they exhibited greater survival, grew to a larger size, developed more rapidly, and achieved higher densities than on nitrogen-deficient plants. However, P. marginata experienced greater fitness penalties than P. dolus on nitrogen-deficient plants. Phosphorus limitation and associated fitness penalties were not as severe as nitrogen limitation for P. marginata, and were not detected in P. dolus. The tempered response of P. dolus to N- and P-deficient Spartina is probably due to its greater investment in feeding musculature and hence ability to compensate for nutrient deficiencies with increased ingestion. To cope with deteriorating plant quality, P. dolus employs compensatory feeding, whereas P. marginata disperses to higher quality Spartina. When its option of dispersal is eliminated and P. marginata is confined on nutrient-deficient plants, its performance is drastically reduced compared with P. dolus. This research highlights the importance of interfacing herbivore life-history strategies with ecological stoichiometry in order to interpret the consequences of macronutrient limitation on herbivore performance and population dynamics.
Journal Article
Feeding-Induced Changes in Plant Quality Mediate Interspecific Competition between Sap-Feeding Herbivores
by
Cheng, Jiaan
,
Denno, Robert F.
,
Gratton, Claudio
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
asymmetry
2000
Feeding-induced plant resistance is a well-documented phenomenon for leaf-chewing insects. Furthermore, feeding-induced resistance provides the mechanistic basis for many cases of delayed interspecific competition, whereby previous feeding by one species diminishes the performance of other herbivores which attack the same plant later in the season. This phenomenon, however, has been very poorly investigated for sap-feeding insects. The results we present here for salt marsh-inhabiting planthoppers (Prokelisia dolus and P. marginata) provide one of the few known examples of delayed, plant-mediated interspecific competition between two sap-feeding insects. Three lines of experimental evidence from the laboratory, field cages, and open field plots provide support for the detrimental effects of previous feeding by one planthopper species on the subsequent survival and performance of the other. Laboratory experiments showed that prior feeding on cordgrass by one congener resulted in reduced performance of the other in the following generation. However, the effect was asymmetric. Prior feeding by P. dolus resulted in prolonged development and reduced body size (a correlate of fecundity) in P. marginata, whereas only development was protracted in P. dolus when plants were previously exposed to P. marginata. Consequently, P. dolus appears to be the superior competitor in the context of delayed, plant-mediated interactions. The negative effects of previous feeding by P. dolus on the development time, body size, and survival of P. marginata obtained in the laboratory were confirmed both in cages and on cage-free islets of cordgrass in the field. Feeding-induced reductions in host-plant quality by P. dolus may provide additional impetus for P. marginata to migrate from shared habitats on the high marsh to nutritionally superior plants in the low marsh rarely occupied by P. dolus. The mechanism underlying the delayed competitive effects between Prokelisia planthoppers is most likely diminished plant nutrition, because feeding by P. dolus significantly reduces the concentration of essential amino acids in cordgrass. The asymmetry of plant-mediated competition between the Prokelisia species may be due to the ability of P. dolus to better tolerate feeding-depleted levels of plant nitrogen via compensatory feeding. Even though these two planthoppers do not suffer significant fitness reductions during contemporaneous interactions, they compete severely in the context of feeding-induced plant resistance which is expressed later in the season. This result, coupled with the fact that most studies of interspecific interaction between herbivorous insects are contemporaneous, indicates that interspecific competition may be profoundly underestimated as a structuring force in phytophagous insect communities.
Journal Article
Differential outcomes of novel plant-herbivore associations between an invading planthopper and native and invasive Spartina cordgrass species
2021
Non-native plants may benefit, briefly or permanently, from natural enemy release in their invaded range, or may form novel interactions with native enemy species. Likewise, newly arrived herbivores may develop novel associations with native plants or, where their hosts have arrived ahead of them, re-establish interactions that existed previously in their ancestral ranges. Predicting outcomes from this diversity of novel and re-established interactions between plants and their herbivores presents a major challenge for invasion biology. We report on interactions between the recently arrived invasive planthopper Prokelisia marginata, and the multi-ploidy Spartina complex of four native and introduced species in Britain, each representing a different level of shared evolutionary history with the herbivore. As predicted, S. alterniflora, the ancestral host, was least impacted by planthopper herbivory, with the previously unexposed native S. maritima, a nationally threatened species, suffering the greatest impacts on leaf length gain, new leaf growth and relative water content. Contrary to expectations, glasshouse trials showed P. marginata to preferentially oviposit on the invasive allododecaploid S. anglica, on which it achieved earlier egg hatch, faster nymphal development, larger female body size and greatest final population size. We suggest P. marginata is in the process of rapid adaptation to maximise its performance on what is now the most abundant and widespread host in Britain. The diversity of novel and re-established interactions of the herbivore with this multi-ploidy complex makes this a highly valuable system for the study of the evolutionary ecology of plant–insect interactions and their influence on invasion dynamics.
Journal Article
Predator diversity dampens trophic cascades
by
Finke, D.L
,
Denno, R.F
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Animals
2004
Food web complexity is thought to weaken the strength of terrestrial trophic cascades in which strong impacts of natural enemies on herbivores cascade to influence primary production indirectly. Predator diversity can enhance food web complexity because predators may feed on each other and on shared prey. In such cases, theory suggests that the impact of predation on herbivores relaxes and cascading effects on basal resources are dampened. Despite this view, no empirical studies have explicitly investigated the role of predator diversity in mediating primary productivity in a natural terrestrial system. Here we compare, in a coastal marsh community, impacts of arthropod predators on herbivores and plant productivity between a simple food web with a single predator species and a complex food web with a diverse predator assemblage. We show that enhancing predator diversity dampens enemy effects on herbivores and weakens trophic cascades. Consequently, changes in diversity at higher trophic levels can significantly alter ecosystem function in natural systems.
Journal Article
Variation in Densities of the Salt Marsh Katydid Orchelimum fidicinium over Space and Time
2022
Densities of Orthoptera typically vary greatly over space and time. The most important salt marsh orthopteran on the East Coast of the US is Orchelimum fidicinium, an omnivore that feeds on cordgrass (Spartina alterniflora) and arthropods. We examined spatial (34 sites) and temporal (5 sites, 17 years) variation in O. fidicinium density in coastal Georgia. Sites with considerable adjacent upland habitat had higher densities of O. fidicinium than sites with little adjacent upland. Grasshoppers fed S. alterniflora from both types of sites did not differ in growth rates, ruling out food quality as an explanation. We speculate instead that O. fidicinium require terrestrial habitat for reproduction or escape from predators during extreme high tides. At five sites where O. fidicinium was common, densities varied greatly among years. Regression models indicated that current year plant biomass (three sites) or previous year plant biomass (one site) was the best predictor of O. fidicinium density. Relationships between O. fidicinium and current year plant biomass were typically negative (more grasshoppers in years with lower plant biomass). A possible explanation for this pattern is that plant nutrients may be diluted in years with high plant biomass. We found little evidence that density of animal prey (Prokelisia spp.) or abiotic factors affected O. fidicinium densities. Our study illustrates the value of examining population densities across multiple sites and years, because results from any one site or year would likely have mischaracterized the spatial and temporal distribution of this common salt marsh consumer.
Journal Article
Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades
by
Finke, D.L
,
Denno, R.F
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Animals
2006
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.
Journal Article
Comparative Phylogeography, Historical Demography, and Population Genetics of Three Common Coastal Fauna in Spartina Marshes of the Northwestern Gulf of Mexico
by
Espinoza, Gloria Janelle
,
Alvarado Bremer, Jaime R.
in
Animal reproduction
,
Aquatic plants
,
Arthropods
2023
Coastal wetlands worldwide are experiencing high rates of loss and degradation that may lead to a reduction in diversity in faunal populations. Since salt marsh habitats are subject to a multitude of stressors, evaluations of the genetic diversity, connectivity, and potential resilience of faunal communities within salt marsh habitats are relevant. This study characterizes mitochondrial DNA (mtDNA) diversity for three common faunal residents of salt marshes along the northern Gulf of Mexico. Gulf Killifish (Fundulus grandis) samples were characterized for 1077 bp of the concatenated nucleotide sequence corresponding to the Control Region and Nitrogen Dehydrogenase, Subunits 2 and 5. Daggerblade grass shrimp (Palaemon pugio) samples were characterized using 466 bp of 16sRNA sequence, and phloem-feeding planthoppers (Prokelisia marginata) were characterized using 372 bp of Cytochrome c Oxidase Subunit I (COI) sequence. For F. grandis, our data revealed high levels of haplotypic diversity, evidence of isolation by distance (IBD), and regional population structuring associated with the distribution of two distinct phylogroups and distinct historical demography signatures. P. pugio and P. marginata displayed low levels of haplotypic diversity and evidence of population structure, but both appear to contain only snapshots of the total potential diversity for these species in the Gulf of Mexico. Greater resolution of the patterns of historical demography of Gulf Killifish may be obtained in future studies by including localities from Florida and Mexico. For both P. pugio and planthoppers, future studies would benefit from the characterization of genetic markers with a higher degree of polymorphism. We conclude that despite these three species inhabiting the same habitats along the same stretch of coast, each is subject to a different combination of evolutionary forces, and this study was able to reconstruct differences in how the genetic variation in each of these species emerged, and how it is maintained.
Journal Article
matrix enhances the effectiveness of corridors and stepping stones
by
Baum, Kristen A.
,
Haynes, Kyle J.
,
Cronin, James T.
in
Animal, plant and microbial ecology
,
Applied ecology
,
Aquatic plants
2004
Conservation strategies often call for the utilization of corridors and/or stepping stones to promote dispersal among fragmented populations. However, the extent to which these strategies increase connectivity for an organism may depend not only on the corridors and stepping stones themselves, but also on the composition of the surrounding matrix. Using an herbivore-host-plant system consisting of the planthopper Prokelisia crocea and its sole host plant, prairie cordgrass (Spartina pectinata), we show that the effectiveness of corridors and stepping stones for promoting planthopper dispersal among patches depended strongly on the intervening matrix habitat. In a low-resistance matrix (one that facilitates high rates of interpatch dispersal), both stepping stones and corridors promoted high connectivity, increasing the number of colonists by threefold relative to patches separated by matrix habitat only. The effectiveness of stepping stones and corridors was significantly lower in a high-resistance matrix (one that promotes low rates of interpatch dispersal), with stepping stones failing to improve connectivity for the planthoppers relative to controls. Thus, we conclude that the matrix is an integral component of landscapes and should be considered together with corridors and stepping stones in strategies designed to increase dispersal among fragmented populations.
Journal Article
Intraguild Predation Diminished in Complex-Structured Vegetation: Implications for Prey Suppression
by
Finke, Deborah L.
,
Denno, Robert F.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
antagonistic predator–predator interactions
2002
Multiple-predator limitation of prey populations may be mediated by both predator-predator interactions and vegetation structure. Antagonistic interactions among predators, such as intraguild predation, can diminish the collective impact of natural enemies on prey population size. However, structurally complex vegetation may moderate such interactions by providing a refuge for predators, thereby enhancing prey suppression. Specifically, we examined the combined impact of two salt-marsh-inhabiting invertebrate predators, the mirid Tytthus vagus and the wolf spider Pardosa littoralis, on suppression of their shared prey, the planthopper Prokelisia dolus, in simple (thatch-free) and complex (thatch-rich) vegetation. In structurally simple habitats in the laboratory, the predators interacted antagonistically, due to the intraguild predation of mirids by spiders, and predation pressure on the planthopper population was relaxed. However, structurally complex habitats dampened this antagonistic interaction by providing a refuge for mirids from spider predation, thereby increasing the combined effectiveness of these predators in suppressing planthopper populations. Consistent with our laboratory results, we found enhanced co-occurrence of these predators in complex habitats in the field, where mirids are apparently at lower risk from spider predation and outbreaks of planthoppers are less likely. In contrast, in simple habitats, mirids were relatively less abundant, a finding consistent with the expectation of increased intraguild predation from spiders. Therefore, in this salt marsh system, complex vegetation diminished the occurrence of intraguild predation between mirids and spiders and increased overall enemy impact on their shared herbivore prey, demonstrating for the first time that plants can mediate enemy effects on insect herbivores by influencing predator-predator interactions.
Journal Article
Interpatch movement and edge effects: the role of behavioral responses to the landscape matrix
by
J. Haynes, Kyle
,
T. Cronin, James
in
Animal and plant ecology
,
Animal behavior
,
Animal ethology
2006
Animal interpatch movement and spatial distribution are known to be influenced substantially by the composition of the landscape matrix, but little is known about the underlying mechanisms. In previous mark-recapture experiments we have found that the rates of emigration and immigration for the planthopper Prokelisia crocea are greater within a matrix composed of the introduced grass smooth brome (Bromus inermis) than a mudflat matrix. Additionally, census data indicated that individuals aggregate near the edge of host-plant patches (prairie cordgrass; Spartina pectinata) bordered by mudflat, but not in patches bordered by nonhost grasses such as brome. Here, we investigate the mechanistic basis of these matrix effects by tracking the individual movements of planthoppers released at the edge of brome- and mudflat-bordered cordgrass patches, and within homogeneous habitats of each type (cordgrass, brome, and mudflat). We found that patch edges bordered by brome were three times more permeable to emigration than mudflat-bordered edges. Also, planthoppers exhibited no tendency to avoid edges by moving away (i.e. towards the patch interior). Within homogeneous habitats, comparison of the fractal dimension of movement paths revealed that movement was more linear in mudflat than in brome or cordgrass. In addition, planthoppers exhibited greater step lengths (distance moved per 10-min interval), shorter residency times (duration of pauses between movements), and greater rates of net linear displacement in mudflat than brome and cordgrass. We attribute the planthopper's distributional patterns within patches to the lower permeability of mudflat than nonhost grass edges and the absence of edge-avoidance behavior. Contrary to conventional wisdom that low-resistance matrix types (e.g. those that promote high displacement rates) enhance interpatch dispersal rates, dispersal success may be higher in brome matrix because tortuous movement through this matrix increases the planthopper's rate of encounter with cordgrass patches.
Journal Article