Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
57,600 result(s) for "Promoter"
Sort by:
An update and perspectives on the use of promoters in plant genetic engineering
Genetically engineered plants have varied applications in agriculture for enhancing the values of food and feed. Genetic engineering aims to introduce selected genetic regions with desirable traits into target plants for both spatial and temporal expressions. Promoters are the key elements responsible for regulating gene expressions by modulating the transcription factors (TFs) through recognition of RNA polymerases. Based on their recognition and expression, RNA polymerases were categorized into RNA pol II and pol III promoters. Promoter activity and specificity are the two prime parameters in regulating the transgene expression. Since the use of constitutive promoters like Cauliflower mosaic virus (CaMV) 35S may lead to adverse effects on non-target organisms or ecosystem, inducible/tissue specific promoters and/or the RNA pol III promoters provide myriad opportunities for gene expressions with controlled regulation and with minimum adverse effects. Besides their role in transgene expression, their influence in synthetic biology and genome editing are also discussed. This review provides an update on the importance, current prospects, and insight into the advantages and disadvantages of promoters reported thus far would help to utilize them in the endeavour to develop nutritionally and agronomically improved transgenic crops for commercialization.
A promoter-level mammalian expression atlas
Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research. A study from the FANTOM consortium using single-molecule cDNA sequencing of transcription start sites and their usage in human and mouse primary cells, cell lines and tissues reveals insights into the specificity and diversity of transcription patterns across different mammalian cell types. Mapping the human transcription FANTOM5 (standing for functional annotation of the mammalian genome 5) is the fifth major stage of a major international collaboration that aims to dissect the transcriptional regulatory networks that define every human cell type. Two Articles in this issue of Nature present some of the project's latest results. The first paper uses the FANTOM5 panel of tissue and primary cell samples to define an atlas of active, in vivo bidirectionally transcribed enhancers across the human body. These authors show that bidirectional capped RNAs are a signature feature of active enhancers and identify more than 40,000 enhancer candidates from over 800 human cell and tissue samples. The enhancer atlas is used to compare regulatory programs between different cell types and identify disease-associated regulatory SNPs, and will be a resource for studies on cell-type-specific enhancers. In the second paper, single-molecule sequencing is used to map human and mouse transcription start sites and their usage in a panel of distinct human and mouse primary cells, cell lines and tissues to produce the most comprehensive mammalian gene expression atlas to date. The data provide a plethora of insights into open reading frames and promoters across different cell types in addition to valuable annotation of mammalian cell-type-specific transcriptomes.
H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells
Background Transcription regulation in pluripotent embryonic stem (ES) cells is a complex process that involves multitude of regulatory layers, one of which is post-translational modification of histones. Acetylation of specific lysine residues of histones plays a key role in regulating gene expression. Results Here we have investigated the genome-wide occurrence of two histone marks, acetylation of histone H3K9 and K14 (H3K9ac and H3K14ac), in mouse embryonic stem (mES) cells. Genome-wide H3K9ac and H3K14ac show very high correlation between each other as well as with other histone marks (such as H3K4me3) suggesting a coordinated regulation of active histone marks. Moreover, the levels of H3K9ac and H3K14ac directly correlate with the CpG content of the promoters attesting the importance of sequences underlying the specifically modified nucleosomes. Our data provide evidence that H3K9ac and H3K14ac are also present over the previously described bivalent promoters, along with H3K4me3 and H3K27me3. Furthermore, like H3K27ac, H3K9ac and H3K14ac can also differentiate active enhancers from inactive ones. Although, H3K9ac and H3K14ac, a hallmark of gene activation exhibit remarkable correlation over active and bivalent promoters as well as distal regulatory elements, a subset of inactive promoters is selectively enriched for H3K14ac. Conclusions Our study suggests that chromatin modifications, such as H3K9ac and H3K14ac, are part of the active promoter state, are present over bivalent promoters and active enhancers and that the extent of H3K9 and H3K14 acetylation could be driven by cis regulatory elements such as CpG content at promoters. Our study also suggests that a subset of inactive promoters is selectively and specifically enriched for H3K14ac. This observation suggests that histone acetyl transferases (HATs) prime inactive genes by H3K14ac for stimuli dependent activation. In conclusion our study demonstrates a wider role for H3K9ac and H3K14ac in gene regulation than originally thought.
Changes to the core and flanking sequences of G‐box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters
Summary Cis‐regulatory elements in promoters are major determinants of binding specificity of transcription factors (TFs) for transcriptional regulation. To improve our understanding of how these short DNA sequences regulate gene expression, synthetic promoters consisting of both classical (CACGTG) and variant G‐box core sequences along with different flanking sequences derived from the promoters of three different highly expressing soybean genes, were constructed and used to regulate a green fluorescent protein (gfp) gene. Use of the classical 6‐bp G‐box provided information on the base level of GFP expression while modifications to the 2–4 flanking bases on either side of the G‐box influenced the intensity of gene expression in both transiently transformed lima bean cotyledons and stably transformed soybean hairy roots. The proximal 2‐bp sequences on either flank of the G‐box significantly affected G‐box activity, while the distal 2‐bp flanking nucleotides also influenced gene expression albeit with a decreasing effect. Manipulation of the upstream 2‐ to 4‐bp flanking sequence of a G‐box variant (GACGTG), found in the proximal region of a relatively weak soybean glycinin promoter, significantly enhanced promoter activity using both transient and stable expression assays, if the G‐box variant was first converted into a classical G‐box (CACGTG). In addition to increasing our understanding of regulatory element composition and structure, this study shows that minimal targeted changes in native promoter sequences can lead to enhanced gene expression, and suggests that genome editing of the promoter region can result in useful and predictable changes in native gene expression.
Eukaryotic core promoters and the functional basis of transcription initiation
RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.
Promotech: a general tool for bacterial promoter recognition
Promoters are genomic regions where the transcription machinery binds to initiate the transcription of specific genes. Computational tools for identifying bacterial promoters have been around for decades. However, most of these tools were designed to recognize promoters in one or few bacterial species. Here, we present Promotech, a machine-learning-based method for promoter recognition in a wide range of bacterial species. We compare Promotech’s performance with the performance of five other promoter prediction methods. Promotech outperforms these other programs in terms of area under the precision-recall curve (AUPRC) or precision at the same level of recall. Promotech is available at https://github.com/BioinformaticsLabAtMUN/PromoTech .
Next-generation stress-inducible Komagataella phaffii promoter variants
Background Expanding the promoter toolbox of Komagataella phaffii (K. phaffii) in terms of strength and regulatory flexibility can significantly enhance bioprocess efficiency for recombinant protein and metabolite production. The most frequently used promoters are still derived from the methanol utilization (MUT) pathway or genes of the central metabolism. However, the hazards and costs associated with methanol have prompted the search for alternative promoters, including engineered variants. A key limitation remains, many available promoters are still growth-coupled, tying production to biomass accumulation and shortening process duration. Promoters with growth-decoupled expression are therefore highly desirable. In this context, the recently described P DH promoter is of interest due to its methanol independence, strong expression, and growth-decoupled regulation. Results In order to identify potential activator sites of the P DH , a systematic semi-rational block-scanning approach was used, employing single-base and sequence block walking mutagenesis. The strength of 152 systematically generated variants was characterized using the intracellular reporter eGFP. Variants showed altered strengths and regulatory patterns with fluorescence levels spanning approximately 10–150% of the parental promoter. Subsequently, the best-performing variants were combined to multi-combination variants, which showed activities up to 250% of the parental P DH . Selected variants were also evaluated with the industrially relevant and secreted enzyme Cal B, a lipase from Candida antarctica. Lipase product titers were approx. 2-fold higher than with the parental native promoter sequence and also outperformed the typical state-of-the-art benchmark and constitutive and growth-coupled GAP promoter (P GAP ). Conclusions Creating and characterizing variants of the P DH sequence supported the elucidation of the sequence-function relationships of this promoter. In addition, the surprisingly beneficial effects of a synthetic 10 bp sequence stretch opened up opportunities for further engineering of this system and extended the toolbox of efficient vector parts for methanol-free and growth-decoupled protein production with K. phaffii . Those additional promoter sequences will also support the construction of stable engineered strains with a balanced expression of multiple genes, as needed for e.g. multienzyme pathways and synthetic biology applications.
Tools for neuroanatomy and neurogenetics in Drosophila
We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain.
Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial
Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses 1 , 2 and can function as bona fide antigens that facilitate tumour rejection 3 . Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma 4 – 6 , is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load 1 , 7 and an immunologically ‘cold’ tumour microenvironment 8 . We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone—a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma—generated circulating polyfunctional neoantigen-specific CD4 + and CD8 + T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma. Neoantigen-targeting vaccines are a feasible therapy for tumours with a low mutation burden and immunologically ‘cold’ tumour microenvironment, as neoantigen-specific T cells from the peripheral blood migrate into intracranial glioblastoma, thereby altering the immune milieu of the glioblastoma.
Bidirectional promoters generate pervasive transcription in yeast
Genome-wide pervasive transcription has been reported in many eukaryotic organisms revealing a highly interleaved transcriptome organization that involves hundreds of previously unknown non-coding RNAs. These recently identified transcripts either exist stably in cells (stable unannotated transcripts, SUTs) or are rapidly degraded by the RNA surveillance pathway (cryptic unstable transcripts, CUTs). One characteristic of pervasive transcription is the extensive overlap of SUTs and CUTs with previously annotated features, which prompts questions regarding how these transcripts are generated, and whether they exert function. Single-gene studies have shown that transcription of SUTs and CUTs can be functional, through mechanisms involving the generated RNAs or their generation itself. So far, a complete transcriptome architecture including SUTs and CUTs has not been described in any organism. Knowledge about the position and genome-wide arrangement of these transcripts will be instrumental in understanding their function. Here we provide a comprehensive analysis of these transcripts in the context of multiple conditions, a mutant of the exosome machinery and different strain backgrounds of Saccharomyces cerevisiae. We show that both SUTs and CUTs display distinct patterns of distribution at specific locations. Most of the newly identified transcripts initiate from nucleosome-free regions (NFRs) associated with the promoters of other transcripts (mostly protein-coding genes), or from NFRs at the 3' ends of protein-coding genes. Likewise, about half of all coding transcripts initiate from NFRs associated with promoters of other transcripts. These data change our view of how a genome is transcribed, indicating that bidirectionality is an inherent feature of promoters. Such an arrangement of divergent and overlapping transcripts may provide a mechanism for local spreading of regulatory signals--that is, coupling the transcriptional regulation of neighbouring genes by means of transcriptional interference or histone modification.