Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
256
result(s) for
"Pronghorn."
Sort by:
Mycoplasma bovis Infections in Free-Ranging Pronghorn, Wyoming, USA
by
Mildenberger, Jim
,
Killion, Hally
,
Hull, Noah
in
Animal diseases
,
antelope pneumonia
,
Bacterial pneumonia
2020
Mycoplasma bovis is 1 of several bacterial pathogens associated with pneumonia in cattle. Its role in pneumonia of free-ranging ungulates has not been established. Over a 3-month period in early 2019, »60 free-ranging pronghorn with signs of respiratory disease died in northeast Wyoming, USA. A consistent finding in submitted carcasses was severe fibrinosuppurative pleuropneumonia and detection of M. bovis by PCR and immunohistochemical analysis. Multilocus sequence typing of isolates from 4 animals revealed that all have a deletion in 1 of the target genes, adh-1. A retrospective survey by PCR and immunohistochemical analysis of paraffin-embedded lung from 20 pronghorn that died with and without pneumonia during 2007-2018 yielded negative results. These findings indicate that a distinct strain of M. bovis was associated with fatal pneumonia in this group of pronghorn.
Journal Article
Pronghorn
\"Simple text and full-color photography introduce beginning readers to pronghorn. Developed by literacy experts for students in kindergarten through third grade\"-- Provided by publisher.
Built for speed : a year in the life of pronghorn / John A. Byers
2003
\"The National Bison Range in western Montana, established in 1908 to snatch bison from the brink of extinction, also inadvertently rescued the largest known remnant of Palouse Prairie. It is within this grassland habitat - home to meadowlarks, rattlesnakes, bighorn sheep, coyotes, elk, snipe, and a panoply of wildflowers - that Byers observes the pronghorn's life from birth to death (a life often as brief as four days, sometimes as long as fifteen years) and from season to season. Readers will also experience the vicarious pleasures of a biologist who is eager to race a pronghorn in his truck, scrutinize bison dung through binoculars, and peer through the gathering dusk of a rainy evening to count the display dives of snipe.\"--Jacket.
Seasonal shifts in pronghorn antelope
2023
Foraging is one of the most fundamental activities contributing to the maximization of an animal's fitness, and thus herbivores must optimize their diet selection and intake to meet their nutrient demands for survival, growth, and reproduction. Using plant DNA barcoding, we determined diet composition of five subpopulations of adult female pronghorn antelope (Antilocapra americana) grazing rangelands in southern and southeastern Idaho, USA. Fecal samples were collected for two years (2018-2019), and across metabolically-important adult female life history stages (late gestation, early lactation, breeding season). Plant DNA barcoding yielded 137 detected species within pronghorn diets across subpopulations and sampling periods with forbs being the most abundant. Pronghorn dietary functional group composition ranged from 52.2-60.3% from forbs followed by shrubs (22.6-28.2%), graminoids (8.7-15.7%), and legumes (5.5-9.6%). Dietary protein intake was also highest from forbs and ranged from 32.4-62.4% followed by graminoids (1.2-43.1%), shrubs (18.7-21.3%), and legumes (2.6-7.4%). We found significant intra- and interannual differences in the mean number of genera-based plant detections in pronghorn diets. Dietary protein intake of cultivated legumes (e.g., alfalfa [Medicago sativa] and sainfoin [Onobrychis viciifolia]) was lower than expected, ranging from <1.0-30.8%, suggesting that even within an agricultural-dominated landscape, factors other than plant nutritional composition contributed to pronghorn diets. Although the plant DNA barcoding technique exhibits limitations, it demonstrated potential for elucidating pronghorn dietary species richness, particularly for plants consumed in small proportions, as well as for observing temporal fluctuations in functional group composition and dietary protein intake explained through the interplay between environmental factors, plant chemical composition, and the animals' physiological needs.
Journal Article
PBMR-400 BENCHMARK SOLUTION OF EXERCISE 1 AND 2 USING THE MOOSE BASED APPLICATIONS: MAMMOTH, PRONGHORN
by
Schunert, Sebastian
,
Carlsen, Robert W
,
Balestra, Paolo
in
mammoth
,
neutron kinetic
,
pbmr-400
2021
High temperature gas cooled reactors (HTGR) are a candidate for timely Gen-IV reactor technology deployment because of high technology readiness and walk-away safety. Among HTGRs, pebble bed reactors (PBRs) have attractive features such as low excess reactivity and online refueling. Pebble bed reactors pose unique challenges to analysts and reactor designers such as continuous burnup distribution depending on pebble motion and recirculation, radiative heat transfer across a variety of gas-filled gaps, and long design basis transients such as pressurized and depressurized loss of forced circulation. Modeling and simulation is essential for both the PBR’s safety case and design process. In order to verify and validate the new generation codes the Nuclear Energy Agency (NEA) Data bank provide a set of benchmarks data together with solutions calculated by the participants using the state of the art codes of that time. An important milestone to test the new PBR simulation codes is the OECD NEA PBMR-400 benchmark which includes thermal hydraulic and neutron kinetic standalone exercises as well as coupled exercises and transients scenarios. In this work, the reactor multiphysics code MAMMOTH and the thermal hydraulics code Pronghorn, both developed by the Idaho National Laboratory (INL) within the multiphysics object-oriented simulation environment (MOOSE), have been used to solve Phase 1 exercises 1 and 2 of the PBMR-400 benchmark. The steady state results are in agreement with the other participants’ solutions demonstrating the adequacy of MAMMOTH and Pronghorn for simulating PBRs.
Journal Article
Relating gut microbiome composition and life history metrics for pronghorn
by
Buchanan, Courtney E
,
Beck, Jeffrey L
,
Galla, Stephanie J
in
Animal development
,
Climatic changes
,
Ecological research
2024
Host microbial communities (hereafter, the 'microbiome') are recognized as an important aspect of host health and are gaining attention as a useful biomarker to understand the ecology and demographics of wildlife populations. Several studies indicate that the microbiome may contribute to the adaptive capacity of animals to changing environments associated with increasing habitat fragmentation and rapid climate change. To this end, we investigated the gut microbiome of pronghorn (Antilocapra americana), an iconic species in an environment that is undergoing both climatic and anthropogenic change. The bacterial composition of the pronghorn gut microbiome has yet to be described in the literature, and thus our study provides important baseline information about this species. We used 16S rRNA amplicon sequencing of fecal samples to characterize the gut microbiome of pronghorn-a facultative sagebrush (Artemisia spp.) specialist in many regions where they occur in western North America. We collected fecal pellets from 159 captured female pronghorn from four herds in the Red Desert of Wyoming during winters of 2013 and 2014. We found small, but significant differences in diversity of the gut microbiome relative to study area, capture period, and body fat measurements. In addition, we found a difference in gut microbiome composition in pronghorn across two regions separated by Interstate 80. Results indicated that the fecal microbiome may be a potential biomarker for the spatial ecology of free-ranging ungulates. The core gut microbiome of these animals-including bacteria in the phyla Firmicutes (now Bacillota) and Bacteroidota-remained relatively stable across populations and biological metrics. These findings provide a baseline for the gut microbiome of pronghorn that could potentially be used as a target in monitoring health and population structure of pronghorn relative to habitat fragmentation, climate change, and management practices.
Journal Article
Prairie Ghost
by
O'Gara, Bart W
,
Reeves, Henry M
,
McCabe, Richard E
in
Animals
,
Biological Sciences
,
Ecology & Evolutionary Biology
2010,2004
A Wildlife Management Institute Book In this lavishly illustrated volume Richard E. McCabe, Bart W. O'Gara and Henry M. Reeves explore the fascinating relationship of pronghorn with people in early America, from prehistoric evidence through the Battle of Little Bighorn in 1876. The only one of fourteen pronghorn-like genera to survive the great extinction brought on by human migration into North America, the pronghorn has a long and unique history of interaction with humans on the continent, a history that until now has largely remained unwritten. With nearly 150 black-and-white photographs, 16 pages of color illustrations, plus original artwork by Daniel P. Metz, Prairie Ghost: Pronghorn and Human Interaction in Early America tells the intriguing story of humans and these elusive big game mammals in an informative and entertaining fashion that will appeal to historians, biologists, sportsmen and the general reader alike. Winner of the Wildlife Society's Outstanding Book Award for 2005
Demonstration of Pronghorn’s Subchannel Code Modeling of Liquid-Metal Reactors and Validation in Normal Operation Conditions and Blockage Scenarios
2023
Pronghorn-SC is a subchannel code within the Multiphysics Object-Oriented Simulation Environment (MOOSE). Initially designed to simulate flows in water-cooled, square lattice, subchannel assemblies, Pronghorn-SC has been expanded to simulate liquid-metal-cooled flows in triangular lattices, hexagonal subchannel assemblies. For this purpose, the algorithm of Pronghorn-SC was adapted to solve the subchannel equations as they are applicable to a hexagonal wire-wrapped sodium-cooled fast reactor. Cheng–Todreas models for pressure drop and cross-flow models were adopted and a coolant heat conduction term was added. To solve these equations, an improved implicit algorithm was developed robust enough to deal with the numerical issues, associated with low flow and recirculation phenomena. To confirm the prediction capability of Pronghorn-SC, calculations and comparisons with available experimental data of 19- and 37-pin assemblies were performed, as well as other subchannel codes. Finally, a flow blockage modeling feature was added. This capability was validated for both water-cooled square sub-assemblies and sodium-cooled hexagonal sub-assemblies, using experimental data of partially and fully blocked cases.
Journal Article
Nowhere to run
by
Robb, Benjamin S.
,
Sawyer, Hall
,
Kauffman, Matthew J.
in
animals
,
Anthropogenic factors
,
Antilocapra americana
2022
Animal movement can mediate the ecological consequences of fragmentation; however, barriers such as fences, roads, and railways are becoming a pervasive threat to wildlife. Pronghorn (Antilocapra americana) habitat in western North America has been fragmented by roads, railways, and fences. Although pronghorn are sensitive to barriers, neither the relative permeability of different barriers to crossing nor their influence on space use have been quantified. We used a large global positioning system (GPS)-collar dataset of pronghorn (n = 1,010 animal-years) in Wyoming, USA, to first quantify the likelihood that pronghorn cross each of 5 different anthropogenic barriers, including fences, county roads, railroads, state highways, and interstate highways (i.e., interstates). Next, we assessed how each barrier influenced pronghorn space use during the winter as indexed by the area occupied, and daily displacement relative to the density of barriers on an individual’s winter range. The semi-permeability of the 5 barriers varied substantially, with the interstate being the most severe barrier to pronghorn movement. Pronghorn were >300 times less likely to cross interstates compared to state highways. Although pronghorn space use was rarely influenced by barriers within individual core winter ranges, pronghorn space use was constrained by barriers on the buffered periphery of individual winter ranges. Despite their different permeability to movement, the density of fences and combined interstates and railroads had similarly negative effects on pronghorn space use. Our results illustrate that the degree to which pronghorn avoid crossing barriers may scale up to affect access to habitat. Additionally, our results indicate that the effects of barriers on habitat access are not proportional to their permeability. Our results add to a growing consensus that effective management of mobile species depends on understanding how different kinds of semi-permeable barriers influence access and use of habitats.
Journal Article