Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
205
result(s) for
"Prostatic Neoplasms, Castration-Resistant - secondary"
Sort by:
Rucaparib or Physician’s Choice in Metastatic Prostate Cancer
by
Emmenegger, Urban
,
Reaume, M. Neil
,
Bambury, Richard M.
in
Acetic acid
,
Androgen Antagonists - therapeutic use
,
Antineoplastic Agents - therapeutic use
2023
In a randomized trial involving men with metastatic prostate cancer with a DNA-repair defect, rucaparib was associated with longer progression-free survival than a control medication (11.2 vs. 6.4 months).
Journal Article
The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact
by
van der Heijden, Michiel S.
,
van Dessel, Lisanne F.
,
Voest, Emile E.
in
45/15
,
45/23
,
692/308/2056
2019
Metastatic castration-resistant prostate cancer (mCRPC) has a highly complex genomic landscape. With the recent development of novel treatments, accurate stratification strategies are needed. Here we present the whole-genome sequencing (WGS) analysis of fresh-frozen metastatic biopsies from 197 mCRPC patients. Using unsupervised clustering based on genomic features, we define eight distinct genomic clusters. We observe potentially clinically relevant genotypes, including microsatellite instability (MSI), homologous recombination deficiency (HRD) enriched with genomic deletions and
BRCA2
aberrations, a tandem duplication genotype associated with
CDK12
−/−
and a chromothripsis-enriched subgroup. Our data suggests that stratification on WGS characteristics may improve identification of MSI,
CDK12
−/−
and HRD patients. From WGS and ChIP-seq data, we show the potential relevance of recurrent alterations in non-coding regions identified with WGS and highlight the central role of AR signaling in tumor progression. These data underline the potential value of using WGS to accurately stratify mCRPC patients into clinically actionable subgroups.
Detecting genomic abnormalities in metastatic castration-resistant prostate cancer (mCRPC) may impact clinical treatment. Here, the authors present whole-genome sequencing of metastatic biopsies from 197 mCRPC patients, highlighting the landscape of microsatellite stability, homologous repair deficiency, and other genomic subgroups.
Journal Article
Prediction of overall survival for patients with metastatic castration-resistant prostate cancer: development of a prognostic model through a crowdsourced challenge with open clinical trial data
2017
Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease.
Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest—namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial—ENTHUSE M1—in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone.
50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0·791; Bayes factor >5) and surpassed the reference model (iAUC 0·743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3·32, 95% CI 2·39–4·62, p<0·0001; reference model: 2·56, 1·85–3·53, p<0·0001). The new model was validated further on the ENTHUSE M1 cohort with similarly high performance (iAUC 0·768). Meta-analysis across all methods confirmed previously identified predictive clinical variables and revealed aspartate aminotransferase as an important, albeit previously under-reported, prognostic biomarker.
Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer.
Sanofi US Services, Project Data Sphere.
Journal Article
Silencing of CDC20 suppresses metastatic castration-resistant prostate cancer growth and enhances chemosensitivity to docetaxel
2016
The role of cell division cycle 20 (CDC20) was investigated in chemoresistance to decetaxel and the underlying mechanisms in metastatic castration-resistant prostate cancer (mCRPC). MTT assays were performed to determine effects of siRNA-mediated CDC20 knockdown on cell proliferation and anticancer activity of docetaxel. Western blot analyses were conducted to detect changes of Akt and Wnt signaling. Furthermore, in vivo growth of PCa was examined in nude mice treated with siCDC20 or docetaxel alone or in combination. CDC20 was overexpressed in mCRPC cells. Knockdown of CDC20 suppressed cell proliferation and enhanced anticancer effect of docetaxel with IC50 reducing from 0.358 to 0.188 μg/ml in PC3 cells and 0.307 to 0.162 μg/ml in DU145 cells (P<0.01). While no change of Akt signaling was observed, inhibition of Wnt/β-catenin signaling was detected upon CDC20 silencing. Xenograft tumor growth was significantly reduced in nude mice by CDC20 inhibition. The additional treatment of siCDC20 achieved better anticancer effects than that of docetaxel alone. Silencing of CDC20 may be a new strategy to improve chemosensitization to docetaxel in mCRPC.
Journal Article
Targeting TR4 nuclear receptor with antagonist bexarotene increases docetaxel sensitivity to better suppress the metastatic castration-resistant prostate cancer progression
by
Chang Chawnshang
,
Luo, Jie
,
He, Xiang
in
Castration
,
Chemotherapy
,
Cyclin-dependent kinase inhibitor p21
2020
Prostate cancer (PCa) is the second leading cause of cancer death in men in America, and there are no curative options for metastatic castration-resistant prostate cancer (mCRPC). Docetaxel (DTX) has been used as a standard chemotherapy for the mCRPC. However, resistance to DTX is a significant clinical problem as half of patients fail to respond to therapy. The TR4 nuclear receptor has been reported to play an important role in PCa progression, however, its linkage to the DTX resistance remains unclear. Here we found that TR4 was upregulated after DTX chemotherapy in the mCRPC cells and patients, and TR4 expression is correlated with DTX sensitivity with a higher level conferring chemo-resistance. Targeting TR4 with an antagonist bexarotene (Bex, a derivative of retinoid) suppressed the TR4 transactivation with increased DTX chemo-sensitivity. Mechanism dissection studies revealed that TR4 might alter the DTX chemo-sensitivity via modulating the TR4/lincRNA-p21/HIF-1α/VEGF-A signaling. Together, these results suggest that targeting this newly identified TR4/lincRNA-p21/HIF-1α/VEGF-A signaling with Bex, an FDA-approved drug, may increase the DTX chemo-sensitivity to better suppress the mCRPC progression.
Journal Article
Exosomal TUBB3 mRNA expression of metastatic castration‐resistant prostate cancer patients: Association with patient outcome under abiraterone
2021
Background
To use ddPCR to quantify plasma exosomal class III β‐tubulin (βIII‐tubulin, TUBB3, encoded by the TUBB3 gene) mRNA expression in metastatic castration‐resistant prostate cancer (mCRPC) patients, and study the association of this expression with abiraterone efficacy.
Methods
Blood samples were prospectively collected from 52 mCRPC patients using abiraterone as first‐line therapy to measure plasma exosomal TUBB3 mRNA expression value before the initiation of abiraterone. Study endpoints were PSA response rate, PSA‐progression‐free survival (PSA‐PFS), and overall survival (OS, from CRPC to death).
Results
Patients with positive exosomal TUBB3 expression showed shorter PSA‐PFS (negative TUBB3 vs. positive TUBB3: 11.0 vs. 7.9 months; p = 0.014). Further analysis demonstrated that patients with strongly positive exosomal TUBB3 (>20 copies/20 µl) was associated with even shorter PSA‐PFS (negative TUBB3 vs. positive TUBB3 [<20 copies/20 µl] vs. strongly positive TUBB3 [>20 copies/20 µl]: 11.0 vs. 8.3 vs. 3.6 months, p = 0.005). In multivariate analyzes, TUBB3 (+) (HR: 2.114, p = 0.033) and ECOG score >2 (HR: 3.039, p = 0.006) were independent prognosticators of poor PSA‐PFS. PSA response and OS did not present significant differences.
Conclusion
The exosomal TUBB3 mRNA expression level is associated with poor PSA‐PFS of abiraterone in mCRPC patients. The detection of exosomal TUBB3 can be valuable in their management.
In this study, we presented this novel, non‐invasive biomarker for abiraterone resistance in mCRPC patients using a ddPCR approach to quantificationally measure the exosomal TUBB3 mRNA expression. We found that a higher TUBB3 level is correlated with shorter progression time after first‐line abiraterone treatment in mCRPC patients.
Journal Article
Cost-effectiveness analysis of cabazitaxel for metastatic castration resistant prostate cancer after docetaxel and androgen-signaling-targeted inhibitor resistance
2021
Background
The aim of our study was to evaluate the cost-effectiveness of cabazitaxel versus abiraterone or enzalutamide in patients with metastatic castration-resistant prostate cancer (mCRPC) previously treated with docetaxel who had progression within 12 months while receiving an alternative inhibitor (abiraterone or enzalutamide) from a US payer’s perspective.
Methods
To conduct the cost-effectiveness analysis, a Markov decision model was established. Three health states (progression-free survival (PFS), progressive disease (PD) and death) were included, and the incremental cost-effectiveness ratio (ICER) was regarded as the primary endpoint. The willingness-to-pay (WTP) threshold was set at $100,000.00/quality-adjusted life year (QALY), and discounted rates were set at 3% annually. Efficacy data were derived from the CARD trial and Weibull distribution curves were modeled to fit the survival curves. The robustness of the analysis was tested with a series of one-way sensitivity analyses and probabilistic sensitivity analyses.
Results
Overall, the incremental effectiveness and cost of cabazitaxel versus androgen-signaling-targeted inhibitors (ASTIs) were 0.16 QALYs and $49,487.03, respectively, which yielded an ICER of $309,293.94/QALY. Our model was mostly sensitive to the duration of PFS in the cabazitaxel group, cost of cabazitaxel and utility of the PFS state. At a WTP threshold of $100,000.00/QALY, cabazitaxel was the dominant strategy in 0% of the simulations.
Conclusions
Cabazitaxel is unlikely to be a cost-effective treatment option compared with ASTIs in patients with mCRPC previously treated with docetaxel who had progression within 12 months while receiving ASTIs.
Journal Article
Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity
by
Deberle, Luisa M.
,
Büchler, Manuel
,
Zhernosekov, Konstantin
in
Albumins - metabolism
,
Animals
,
Antigens, Surface - administration & dosage
2020
Prostate-specific membrane antigen (PSMA)-targeted radioligands have been used for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Recently, albumin-binding PSMA radioligands with enhanced blood circulation were developed to increase the tumor accumulation of activity. The present study aimed at the design, synthesis and preclinical evaluation of a novel class of PSMA-targeting radioligands equipped with ibuprofen as a weak albumin-binding entity in order to improve the pharmacokinetic properties.
: Four novel glutamate-urea-based PSMA ligands were synthesized with ibuprofen, conjugated via variable amino acid-based linker entities. The albumin-binding properties of the
Lu-labeled PSMA ligands were tested
using mouse and human plasma. Affinity of the radioligands to PSMA and cellular uptake and internalization was investigated using PSMA-positive PC-3 PIP and PSMA-negative PC-3 flu tumor cells. The tissue distribution profile of the radioligands was assessed in biodistribution and imaging studies using PC-3 PIP/flu tumor-bearing nude mice.
: The PSMA ligands were obtained in moderate yields at high purity (>99%).
Lu-labeling of the ligands was achieved at up to 100 MBq/nmol with >96% radiochemical purity.
assays confirmed high binding of all radioligands to mouse and human plasma proteins and specific uptake and internalization into PSMA-positive PC-3 PIP tumor cells. Biodistribution studies and SPECT/CT scans revealed high accumulation in PC-3 PIP tumors but negligible uptake in PC-3 flu tumor xenografts as well as rapid clearance of activity from background organs and tissues.
Lu-Ibu-DAB-PSMA, in which ibuprofen was conjugated via a positively-charged diaminobutyric acid (DAB) entity, showed distinguished tumor uptake and the most favorable tumor-to-blood and tumor-to-kidney ratios.
: The high accumulation of activity in the tumor and fast clearance from background organs was a common favorable characteristic of PSMA radioligands modified with ibuprofen as albumin-binding entity.
Lu-Ibu-DAB-PSMA emerged as the most promising candidate; hence, more detailed preclinical investigations with this radioligand are warranted in view of a clinical translation.
Journal Article
Early Growth Inhibition Is Followed by Increased Metastatic Disease with Vitamin D (Calcitriol) Treatment in the TRAMP Model of Prostate Cancer
by
Ajibade, Adebusola Alagbala
,
Johnson, Candace S.
,
Foster, Barbara A.
in
Adenocarcinoma
,
Adenocarcinoma - drug therapy
,
Adenocarcinoma - epidemiology
2014
The active metabolite of vitamin D3, 1,25-dihydroxyvitamin D3 (calcitriol) has antiproliferative effects in non-aggressive prostate cancer, however, its effects in more aggressive model systems are still unclear. In these studies, effects of calcitriol and a less-calcemic vitamin D analog, QW-1624F2-2 (QW), were tested in vivo, using the aggressive autochthonous transgenic adenocarcinoma of mouse prostate (TRAMP) model. To study prevention of androgen-stimulated prostate cancer, vehicle, calcitriol (20 µg/kg), or QW (50 µg/kg) were administered to 4 week-old TRAMP mice intraperitoneal (i.p.) 3×/week on a MWF schedule for 14 weeks. Calcitriol and QW slowed progression of prostate cancer as indicated by reduced urogenital tract (p = 0.0022, calcitriol; p = 0.0009, QW) and prostate weights (p = 0.0178, calcitriol; p = 0.0086, QW). However, only calcitriol increased expression of the pro-differentiation marker, cadherin 1 (p = 0.0086), and reduced tumor proliferation (p = 0.0467). By contrast, neither vitamin D analog had any effect on castration resistant prostate cancer in mice treated pre- or post-castration. Interestingly, although vitamin D showed inhibitory activity against primary tumors in hormone-intact mice, distant organ metastases seemed to be enhanced following treatment (p = 0.0823). Therefore, TRAMP mice were treated long-term with calcitriol to further examine effects on metastasis. Calcitriol significantly increased the number of distant organ metastases when mice were treated from 4 weeks-of-age until development of palpable tumors (20-25 weeks-of-age)(p = 0.0003). Overall, data suggest that early intervention with vitamin D in TRAMP slowed androgen-stimulated tumor progression, but prolonged treatment resulted in development of a resistant and more aggressive disease associated with increased distant organ metastasis.
Journal Article
Androgen synthesis inhibitors in the treatment of castration-resistant prostate cancer
by
Mark N Stein Neal Patel Alexander Bershadskiy Alisa Sokoloff Eric A Singer
in
Androgen Antagonists - adverse effects
,
Androgen Antagonists - therapeutic use
,
androgen synthesis; castration-resistant prostate cancer; treatment
2014
Suppression of gonadal testosterone synthesis represents the standard first line therapy for treatment of metastatic prostate cancer. However, in the majority of patients who develop castration-resistant prostate cancer (CRPC), it is possible to detect persistent activation of the androgen receptor (AR) through androgens produced in the adrenal gland or within the tumor itself. Abiraterone acetate was developed as an irreversible inhibitor of the dual functional cytochrome P450 enzyme CYP17 with activity as a 17(~-hydroxylase and 17,20-1yase. CYP17 is necessary for production of nongonadal androgens from cholesterol. Regulatory approval of abiraterone in 2011, based on a phase III trial showing a significant improvement in overall survival (OS) with abiraterone and prednisone versus prednisone, represented proof of principle that targeting AR is essential for improving outcomes in men with CRPC. Inhibition of 17α-hydroxylase by abiraterone results in accumulation of upstream mineralocorticoids due to loss of cortisol-mediated suppression of pituitary adrenocorticotropic hormone (ACTH), providing a rationale for development of CYP17 inhibitors with increased specificity for 17,20-1yase (orteronel, galeterone and VT-464) that can potentially be administered without exogenous corticosteroids. In this article, we review the development of abiraterone and other CYP17 inhibitors; recent studies with abiraterone that inform our understanding of clinical parameters such as drug effects on quality-of-life, potential early predictors of response, and optimal sequencing of abiraterone with respect to other agents; and results of translational studies providing insights into resistance mechanisms to CYP17 inhibitors leading to clinical trials with drug combinations designed to prolong abiraterone benefit or restore abiraterone activity.
Journal Article