Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
655
result(s) for
"Prosthesis Design and construction."
Sort by:
Mechanics of biomaterials : fundamental principles for implant design
\"Teaching mechanical and structural biomaterials concepts for successful medical implant design, this self-contained text provides a complete grounding for students and newcomers to the field. Split into three sections: Materials, Mechanics and Case Studies, it begins with a review of sterilization, biocompatibility and foreign body response before presenting the fundamental structures of synthetic biomaterials and natural tissues. Mechanical behavior of materials is then discussed in depth, covering elastic deformation, viscoelasticity and time-dependent behavior, multiaxial loading and complex stress states, yielding and failure theories, and fracture mechanics. The final section on clinical aspects of medical devices provides crucial information on FDA regulatory issues and presents case studies in four key clinical areas: orthopedics, cardiovascular devices, dentistry and soft tissue implants. Each chapter ends with a list of topical questions, making this an ideal course textbook for senior undergraduate and graduate students, and also a self-study tool for engineers, scientists and clinicians\"-- Provided by publisher.
Application of 3D Printing in Implantable Medical Devices
2021
3D printing technology is widely used in the field of implantable medical device in recent decades because of its advantages in high precision, complex structure, and high material utilization. Based on the characteristics of 3D printing technology, this paper reviews the manufacturing process, materials, and some typical products of 3D printing implantable medical devices and analyzes and summarizes the development trend of 3D printed implantable medical devices.
Journal Article
Limbo
by
Wolfe, Bernard, 1915-1985 author
in
Amputees Fiction
,
Prosthesis Design and construction Fiction
2014
In the aftermath of an atomic war, a new international movement of pacifism has arisen. Multitudes of young men have chosen to curb their aggressive instincts through voluntary amputation - disarmament in its most literal sense. Those who have undergone this procedure are highly esteemed in the new society. But they have a problem - their prosthetics require a rare metal to function, and international tensions are rising over which countries get the right to mine it ...
Active lower limb prosthetics: a systematic review of design issues and solutions
by
Windrich, Michael
,
Rinderknecht, Stephan
,
Christ, Oliver
in
Amputees
,
Ankle - surgery
,
Artificial Limbs
2016
This paper presents a review on design issues and solutions found in active lower limb prostheses. This review is based on a systematic literature search with a methodical search strategy. The search was carried out across four major technical databases and the retrieved records were screened for their relevance. A total of 21 different active prostheses, including 8 above-knee, 9 below-knee and 4 combined knee-ankle prostheses were identified. While an active prosthesis may help to restore the functional performance of an amputee, the requirements regarding the actuation unit as well as for the control system are high and the development becomes a challenging task. Regarding mechanical design and the actuation unit high force/torque delivery, high efficiency, low size and low weight are conflicting goals. The actuation principle and variable impedance actuators are discussed. The control system is paramount for a “natural functioning” of the prosthesis. The control system has to enable locomotion and should react to the amputee’s intent. For this, multi-level control approaches are reviewed.
Journal Article
Cyber-Physical System Interface for Implantable Esophageal Prosthesis
2025
This article presents a Cyber-Physical System Interface (CPSI) for a patented implantable esophageal prosthesis. Designed for in vivo use, the CPSI has been implemented in a MATLAB (version R2021b) simulation environment integrated with real-time data from sensors relevant for monitoring the prosthesis’s physical positioning and environmental interactions, aggregated through an Arduino external system. This setup enables the modeling and analysis of system behaviors in a controlled setting. The paper discusses the sensors, hardware and software components supporting a wide range of applications, and the method chosen for sensor-to-display flow. The case study demonstrates two monitoring system applications: one analyzes the influence of variations in the prosthesis geometry, while the other evaluates the tissue response to the implant. The proposed framework and implementation are highly relevant for a wide range of in vivo implants and related systems.
Journal Article
Advances and challenges in the development of visual prostheses
by
Robles, Jose Antonio
,
Fernandez, Eduardo
in
Artificial intelligence
,
Artificial vision
,
Biology and Life Sciences
2024
The past 20 years have witnessed significant advancements in the field of visual prostheses, with developments spanning from early retinal implants to recent cortical approaches. This Perspective looks at some of the remaining challenges to achieve the ambitious clinical goals that these technologies could enable.
Journal Article
An innovative total temporomandibular joint prosthesis with customized design and 3D printing additive fabrication: a prospective clinical study
by
Zhang, ShanYong
,
Zheng, JiSi
,
Jiang, WenBo
in
3-D printers
,
3D printing
,
Additive manufacturing
2019
Background
Total temporomandibular joint (TMJ) prosthesis is an effective and reliable method of joint reconstruction. However, there is still an urgent need to design a new TMJ prosthesis because of no commercially available TMJ prosthesis appropriate for the clinical application on the Chinese population. This study was introduced to prospectively confirm the safety and effectiveness of a new TMJ prosthesis with customized design and 3D printing additive fabrication in clinical application.
Methods
Patients with unilateral end-stage TMJ osteoarthrosis were recruited in this study from Nov 2016 to Mar 2017. Computed tomography scans for all patients were obtained and transformed into three-dimensional (3D) reconstruction models. The customized TMJ prosthesis consisted of three components including the fossa, condylar head, and mandibular handle units, which were designed based on the anatomy of the TMJ and were fabricated using the 3D printing technology. The prominent characters of the prosthesis were the customized design of the fossa component with a single ultra-high-molecular-weight polyethylene and the connection mechanism between the condylar head (Co–Cr–Mo alloy) and mandibular handle components (Ti6Al4 V alloy). The clinical follow-up, radiographic evaluation and laboratory indices were all done to analyze the prosthesis’ outcomes in the clinical application.
Results
12 consecutive patients were included in the study. There were no complications (infection of the surgical wound, damage of liver and kidney, displacement, breakage, or loosening of the prosthesis) found after surgery. Pain, diet, mandibular function, and maximal interincisal opening showed significant improvements after surgery. But the lateral movement was limited to the non-operated side and the mandible deviated towards the operated side on opening mouth following surgery.
Conclusions
The presented TMJ prosthesis is considered an innovative product in TMJ Yang’s system, which is unique compared to other prostheses for the special design and 3D printing additive manufacture. Moreover, the prosthesis is very safe and efficient for clinical use.
Trial registration
Prospective reports on Chinese customized total temporomandibular joint prosthesis reconstruction cases, ChiCTR-ONC-16009712. Registered 22 Nov 2016,
http://www.chictr.org.cn/showproj.aspx?proj=16091
Journal Article
Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review
by
Segil, Jacob L.
,
Belter, Joseph T.
,
Weir, Richard F.
in
Amputation
,
Anthropometry
,
Artificial Limbs
2013
In this article, we set forth a detailed analysis of the mechanical characteristics of anthropomorphic prosthetic hands. We report on an empirical study concerning the performance of several commercially available myoelectric prosthetic hands, including the Vincent, iLimb, iLimb Pulse, Bebionic, Bebionic v2, and Michelangelo hands. We investigated the finger design and kinematics, mechanical joint coupling, and actuation methods of these commercial prosthetic hands. The empirical findings are supplemented with a compilation of published data on both commercial and prototype research prosthetic hands. We discuss numerous mechanical design parameters by referencing examples in the literature. Crucial design trade-offs are highlighted, including number of actuators and hand complexity, hand weight, and grasp force. Finally, we offer a set of rules of thumb regarding the mechanical design of anthropomorphic prosthetic hands.
Journal Article
Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity
by
Lintas Valentina
,
Fioretta, Emanuela S
,
Baaijens Frank P T
in
Cardiovascular disease
,
Heart
,
Prostheses
2021
Valvular heart disease is a major cause of morbidity and mortality worldwide. Surgical valve repair or replacement has been the standard of care for patients with valvular heart disease for many decades, but transcatheter heart valve therapy has revolutionized the field in the past 15 years. However, despite the tremendous technical evolution of transcatheter heart valves, to date, the clinically available heart valve prostheses for surgical and transcatheter replacement have considerable limitations. The design of next-generation tissue-engineered heart valves (TEHVs) with repair, remodelling and regenerative capacity can address these limitations, and TEHVs could become a promising therapeutic alternative for patients with valvular disease. In this Review, we present a comprehensive overview of current clinically adopted heart valve replacement options, with a focus on transcatheter prostheses. We discuss the various concepts of heart valve tissue engineering underlying the design of next-generation TEHVs, focusing on off-the-shelf technologies. We also summarize the latest preclinical and clinical evidence for the use of these TEHVs and describe the current scientific, regulatory and clinical challenges associated with the safe and broad clinical translation of this technology.Next-generation tissue-engineered heart valves (TEHVs) are a promising therapeutic option for patients with valvular heart disease. In this Review, Emmert and colleagues discuss the current heart valve replacement options, describe the design of TEHVs and summarize the data from preclinical and clinical studies on the use of TEHVs.
Journal Article
Survey of transfemoral amputee experience and priorities for the user-centered design of powered robotic transfemoral prostheses
by
Milandri, Giovanni
,
De Michieli, Lorenzo
,
Vitiello, Nicola
in
Activities of Daily Living
,
Adaptability
,
Age composition
2021
Background
Transfemoral amputees experience a complex host of physical, psychological, and social challenges, compounded by the functional limitations of current transfemoral prostheses. However, the specific relationships between human factors and prosthesis design and performance characteristics have not yet been adequately investigated. The present study aims to address this knowledge gap.
Methods
A comprehensive single-cohort survey of 114 unilateral transfemoral amputees addressed a broad range of demographic and clinical characteristics, functional autonomy, satisfaction and attitudes towards their current prostheses, and design priorities for an ideal transfemoral prosthesis, including the possibility of active assistance from a robotic knee unit. The survey was custom-developed based on several standard questionnaires used to assess motor abilities and autonomy in activities of daily living, prosthesis satisfaction, and quality of life in lower-limb amputees. Survey data were analyzed to compare the experience (including autonomy and satisfaction) and design priorities of users of transfemoral prostheses with versus without microprocessor-controlled knee units (MPKs and NMPKs, respectively), with a subsequent analyses of cross-category correlation, principal component analysis (PCA), cost-sensitivity segmentation, and unsupervised K-means clustering applied within the most cost-sensitive participants, to identify functional groupings of users with respect to their design priorities.
Results
The cohort featured predominantly younger (< 50 years) traumatic male amputees with respect to the general transfemoral amputee population, with pronounced differences in age distribution and amputation etiology (traumatic vs. non-traumatic) between MPK and NMPK groups. These differences were further reflected in user experience, with MPK users reporting significantly greater overall functional autonomy, satisfaction, and sense of prosthesis ownership than those with NMPKs, in conjunction with a decreased incidence of instability and falls. Across all participants, the leading functional priorities for an ideal transfemoral prosthesis were overall stability, adaptability to variable walking velocity, and lifestyle-related functionality, while the highest-prioritized general characteristics were reliability, comfort, and weight, with highly variable prioritization of cost according to reimbursement status. PCA and user clustering analyses revealed the possibility for functionally relevant groupings of prosthesis features and users, based on their differential prioritization of these features—with implications towards prosthesis design tradeoffs.
Conclusions
This study’s findings support the understanding that when appropriately prescribed according to patient characteristics and needs in the context of a proactive rehabilitation program, advanced transfemoral prostheses promote patient mobility, autonomy, and overall health. Survey data indicate overall stability, modularity, and versatility as key design priorities for the continued development of transfemoral prosthesis technology. Finally, observed associations between prosthesis type, user experience, and attitudes concerning prosthesis ownership suggest both that prosthesis characteristics influence device acceptance and functional outcomes, and that psychosocial factors should be specifically and proactively addressed during the rehabilitation process.
Journal Article