Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
26,010 result(s) for "Protein Biosynthesis - drug effects"
Sort by:
Casein Kinase 2 dependent phosphorylation of eIF4B regulates BACE1 expression in Alzheimer’s disease
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder. Increased Aβ production plays a fundamental role in the pathogenesis of the disease and BACE1, the protease that triggers the amyloidogenic processing of APP, is a key protein and a pharmacological target in AD. Changes in neuronal activity have been linked to BACE1 expression and Aβ generation, but the underlying mechanisms are still unclear. We provide clear evidence for the role of Casein Kinase 2 in the control of activity-driven BACE1 expression in cultured primary neurons, organotypic brain slices, and murine AD models. More specifically, we demonstrate that neuronal activity promotes Casein Kinase 2 dependent phosphorylation of the translation initiation factor eIF4B and this, in turn, controls BACE1 expression and APP processing. Finally, we show that eIF4B expression and phosphorylation are increased in the brain of APPPS1 and APP-KI mice, as well as in AD patients. Overall, we provide a definition of a mechanism linking brain activity with amyloid production and deposition, opening new perspectives from the therapeutic standpoint.
A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption . There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein-protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer
Drug-resistance dissemination by horizontal gene transfer remains poorly understood at the cellular scale. Using live-cell microscopy, we reveal the dynamics of resistance acquisition by transfer of the Escherichia coli fertility factor–conjugation plasmid encoding the tetracycline-efflux pump TetA. The entry of the single-stranded DNA plasmid into the recipient cell is rapidly followed by complementary-strand synthesis, plasmid-gene expression, and production of TetA. In the presence of translation-inhibiting antibiotics, resistance acquisition depends on the AcrAB-TolC multidrug efflux pump, because it reduces tetracycline concentrations in the cell. Protein synthesis can thus persist and TetA expression can be initiated immediately after plasmid acquisition. AcrAB-TolC efflux activity can also preserve resistance acquisition by plasmid transfer in the presence of antibiotics with other modes of action.
Mitochondrial RNA modifications shape metabolic plasticity in metastasis
Aggressive and metastatic cancers show enhanced metabolic plasticity 1 , but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications—5-methylcytosine (m 5 C) and its derivative 5-formylcytosine (f 5 C) (refs. 2 – 4 )—drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m 5 C at position 34 in mitochondrial tRNA Met . m 5 C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m 5 C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m 5 C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.
Visualizing translation dynamics at atomic detail inside a bacterial cell
Translation is the fundamental process of protein synthesis and is catalysed by the ribosome in all living cells 1 . Here we use advances in cryo-electron tomography and sub-tomogram analysis 2 , 3 to visualize the structural dynamics of translation inside the bacterium Mycoplasma pneumoniae . To interpret the functional states in detail, we first obtain a high-resolution in-cell average map of all translating ribosomes and build an atomic model for the M.   pneumoniae ribosome that reveals distinct extensions of ribosomal proteins. Classification then resolves 13 ribosome states that differ in their conformation and composition. These recapitulate major states that were previously resolved in vitro, and reflect intermediates during active translation. On the basis of these states, we animate translation elongation inside native cells and show how antibiotics reshape the cellular translation landscapes. During translation elongation, ribosomes often assemble in defined three-dimensional arrangements to form polysomes 4 . By mapping the intracellular organization of translating ribosomes, we show that their association into polysomes involves a local coordination mechanism that is mediated by the ribosomal protein L9. We propose that an extended conformation of L9 within polysomes mitigates collisions to facilitate translation fidelity. Our work thus demonstrates the feasibility of visualizing molecular processes at atomic detail inside cells. Cryo-electron tomography is used to reveal the structural dynamics and functional diversity of translating ribosomes in Mycoplasma pneumoniae , providing insight into the translation elongation cycle inside cells and how it is reshaped by antibiotics.
Proteomics of SARS-CoV-2-infected host cells reveals therapy targets
A new coronavirus was recently discovered and named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infection with SARS-CoV-2 in humans causes coronavirus disease 2019 (COVID-19) and has been rapidly spreading around the globe 1 , 2 . SARS-CoV-2 shows some similarities to other coronaviruses; however, treatment options and an understanding of how SARS-CoV-2 infects cells are lacking. Here we identify the host cell pathways that are modulated by SARS-CoV-2 and show that inhibition of these pathways prevents viral replication in human cells. We established a human cell-culture model for infection with a clinical isolate of SARS-CoV-2. Using this cell-culture system, we determined the infection profile of SARS-CoV-2 by translatome 3 and proteome proteomics at different times after infection. These analyses revealed that SARS-CoV-2 reshapes central cellular pathways such as translation, splicing, carbon metabolism, protein homeostasis (proteostasis) and nucleic acid metabolism. Small-molecule inhibitors that target these pathways prevented viral replication in cells. Our results reveal the cellular infection profile of SARS-CoV-2 and have enabled the identification of drugs that inhibit viral replication. We anticipate that our results will guide efforts to understand the molecular mechanisms that underlie the modulation of host cells after infection with SARS-CoV-2. Furthermore, our findings provide insights for the development of therapies for the treatment of COVID-19. SARS-CoV-2 modulates central cellular pathways, such as translation, splicing, carbon metabolism, proteostasis and nucleic acid metabolism, in human cells; these pathways can be inhibited by small-molecule inhibitors to prevent viral replication in the cells.
Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition
Ribosomes are multicomponent molecular machines that synthesize all of the proteins of living cells. Most of the genes that encode the protein components of ribosomes are therefore essential. A reduction in gene dosage is often viable albeit deleterious and is associated with human syndromes, which are collectively known as ribosomopathies1–3. The cell biological basis of these pathologies has remained unclear. Here, we model human ribosomopathies in Drosophila and find widespread apoptosis and cellular stress in the resulting animals. This is not caused by insufficient protein synthesis, as reasonably expected. Instead, ribosomal protein deficiency elicits proteotoxic stress, which we suggest is caused by the accumulation of misfolded proteins that overwhelm the protein degradation machinery. We find that dampening the integrated stress response4 or autophagy increases the harm inflicted by ribosomal protein deficiency, suggesting that these activities could be cytoprotective. Inhibition of TOR activity—which decreases ribosomal protein production, slows down protein synthesis and stimulates autophagy5—reduces proteotoxic stress in our ribosomopathy model. Interventions that stimulate autophagy, combined with means of boosting protein quality control, could form the basis of a therapeutic strategy for this class of diseases.Recasens-Alvarez et al. model human ribosomopathies and find that apoptosis and cellular stress result from proteotoxic stress that overwhelms the degradation machinery.
Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation
Acute protein folding stress in the mitochondrial matrix activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition. Mammalian mitochondrial stress responses The mitochondrial unfolded protein response (UPR mt ) pathway has been studied in detail in the Caenorhabditis elegans roundworm, where it has been shown to sense protein misfolding within the mitochondrial matrix and to induce a program of nuclear gene expression to counteract this stress. How mammalian cells respond to unfolded matrix proteins has remained much less clear. Christian Münch and Wade Harper used pharmacological inhibitors to induce acute protein folding stress in the mitochondrial matrix, and performed transcriptional and quantitative proteomic analysis to examine the response of mammalian cells. They observed widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. This was accompanied by a rapid reduction in the matrix-localized protein synthesis through translational inhibition. The work could spur further investigation of the mammalian UPR mt . The mitochondrial matrix is unique in that it must integrate the folding and assembly of proteins derived from the nuclear and mitochondrial genomes. In Caenorhabditis elegans , the mitochondrial unfolded protein response (UPR mt ) senses matrix protein misfolding and induces a program of nuclear gene expression, including mitochondrial chaperonins, to promote mitochondrial proteostasis 1 , 2 , 3 . While misfolded mitochondrial-matrix-localized ornithine transcarbamylase induces chaperonin expression 4 , 5 , 6 , our understanding of mammalian UPR mt is rudimentary 7 , reflecting a lack of acute triggers for UPR mt activation. This limitation has prevented analysis of the cellular responses to matrix protein misfolding and the effects of UPR mt on mitochondrial translation to control protein folding loads. Here we combine pharmacological inhibitors of matrix-localized HSP90/TRAP1 (ref. 8 ) or LON protease 9 , which promote chaperonin expression, with global transcriptional and proteomic analysis to reveal an extensive and acute response of human cells to UPR mt . This response encompasses widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. Functional studies revealed rapid but reversible translation inhibition in mitochondria occurring concurrently with defects in pre-RNA processing caused by transcriptional repression and LON-dependent turnover of the mitochondrial pre-RNA processing nuclease MRPP3 (ref. 10 ). This study reveals that acute mitochondrial protein folding stress activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition, and provides a framework for further dissection of mammalian UPR mt .
Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity
Alzheimer’s disease is a common and devastating disease characterized by aggregation of the amyloid-β peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer’s disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-β proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-β proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer’s disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-β proteotoxic diseases, such as Alzheimer’s disease. Amyloid-β peptide proteopathies disrupt mitochondria, and restoring mitochondrial proteostasis reduces protein aggregation in animal models of amyloid-β disease. Mitochondrial proteostasis lowers amyloid-β levels Proteotoxic stress—the accumulation of toxic misfolded proteins in cells—is associated with mitochondrial dysfunction. Johan Auwerx and colleagues now identify mitochondrial proteostasis as a key mechanism in the response to proteotoxic stress caused by the accumulation of amyloid-β. Amyloid-β accumulation induces both the mitochondrial stress response and mitophagy in a manner that is conserved from worms to humans. Boosting this response is beneficial in worms, mammalian cells in culture and a mouse model of Alzheimer's disease. These data suggest that enhancing mitochondrial proteostasis may be useful in managing amyloid-β proteopathies in humans.
Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor
The cancer drug rocaglamide A cements the RNA helicase eIF4A on polypurine sequences and thereby prevents scanning of the 43S subunit along the messenger RNA, highlighting how a drug can act by stabilizing sequence-selective RNA–protein interactions. Mechanism of action of rocaglate drugs The cancer drug rocaglamide A (RocA) inhibits translation of a subclass of RNA transcripts. Because it targets the RNA helicase eIF4A, the specificity of RocA was thought to reside in the highly structured 5′ untranslated region of messenger RNAs that require eIF4A activity. Nicholas Ingolia and colleagues now show that the mechanism of inhibition has a different basis. RocA cements eIF4A on polypurine sequences and thereby prevents scanning of the 43S subunit along the messenger RNA. This report highlights how a drug can act by stabilizing sequence-selective RNA–protein interactions. Rocaglamide A (RocA) typifies a class of protein synthesis inhibitors that selectively kill aneuploid tumour cells and repress translation of specific messenger RNAs 1 , 2 , 3 , 4 . RocA targets eukaryotic initiation factor 4A (eIF4A), an ATP-dependent DEAD-box RNA helicase; its messenger RNA selectivity is proposed to reflect highly structured 5′ untranslated regions that depend strongly on eIF4A-mediated unwinding 5 . However, rocaglate treatment may not phenocopy the loss of eIF4A activity, as these drugs actually increase the affinity between eIF4A and RNA 1 , 2 , 6 . Here we show that secondary structure in 5′ untranslated regions is only a minor determinant for RocA selectivity and that RocA does not repress translation by reducing eIF4A availability. Rather, in vitro and in cells, RocA specifically clamps eIF4A onto polypurine sequences in an ATP-independent manner. This artificially clamped eIF4A blocks 43S scanning, leading to premature, upstream translation initiation and reducing protein expression from transcripts bearing the RocA–eIF4A target sequence. In elucidating the mechanism of selective translation repression by this lead anti-cancer compound, we provide an example of a drug stabilizing sequence-selective RNA–protein interactions.