Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
802
result(s) for
"Protein secondary structure prediction"
Sort by:
SOV_refine: A further refined definition of segment overlap score and its significance for protein structure similarity
by
Liu, Tong
,
Wang, Zheng
in
Bioinformatics
,
Biomedical and Life Sciences
,
Computational Biology/Bioinformatics
2018
Background
The segment overlap score (SOV) has been used to evaluate the predicted protein secondary structures, a sequence composed of helix (H), strand (E), and coil (C), by comparing it with the native or reference secondary structures, another sequence of H, E, and C. SOV’s advantage is that it can consider the size of continuous overlapping segments and assign extra allowance to longer continuous overlapping segments instead of only judging from the percentage of overlapping individual positions as Q3 score does. However, we have found a drawback from its previous definition, that is, it cannot ensure increasing allowance assignment when more residues in a segment are further predicted accurately.
Results
A new way of assigning allowance has been designed, which keeps all the advantages of the previous SOV score definitions and ensures that the amount of allowance assigned is incremental when more elements in a segment are predicted accurately. Furthermore, our improved SOV has achieved a higher correlation with the quality of protein models measured by GDT-TS score and TM-score, indicating its better abilities to evaluate tertiary structure quality at the secondary structure level. We analyzed the statistical significance of SOV scores and found the threshold values for distinguishing two protein structures (SOV_refine > 0.19) and indicating whether two proteins are under the same CATH fold (SOV_refine > 0.94 and > 0.90 for three- and eight-state secondary structures respectively). We provided another two example applications, which are when used as a machine learning feature for protein model quality assessment and comparing different definitions of topologically associating domains. We proved that our newly defined SOV score resulted in better performance.
Conclusions
The SOV score can be widely used in bioinformatics research and other fields that need to compare two sequences of letters in which continuous segments have important meanings. We also generalized the previous SOV definitions so that it can work for sequences composed of more than three states (e.g., it can work for the eight-state definition of protein secondary structures). A standalone software package has been implemented in Perl with source code released. The software can be downloaded from
http://dna.cs.miami.edu/SOV/
.
Journal Article
Effective Local and Secondary Protein Structure Prediction by Combining a Neural Network-Based Approach with Extensive Feature Design and Selection without Reliance on Evolutionary Information
by
Milchevskaya, Vladislava Y.
,
Milchevskiy, Yury V.
,
Kravatsky, Yury V.
in
Accuracy
,
Amino acids
,
Machine learning
2023
Protein structure prediction continues to pose multiple challenges despite outstanding progress that is largely attributable to the use of novel machine learning techniques. One of the widely used representations of local 3D structure—protein blocks (PBs)—can be treated in a similar way to secondary structure classes. Here, we present a new approach for predicting local conformation in terms of PB classes solely from amino acid sequences. We apply the RMSD metric to ensure unambiguous future 3D protein structure recovery. The selection of statistically assessed features is a key component of the proposed method. We suggest that ML input features should be created from the statistically significant predictors that are derived from the amino acids’ physicochemical properties and the resolved structures’ statistics. The statistical significance of the suggested features was assessed using a stepwise regression analysis that permitted the evaluation of the contribution and statistical significance of each predictor. We used the set of 380 statistically significant predictors as a learning model for the regression neural network that was trained using the PISCES30 dataset. When using the same dataset and metrics for benchmarking, our method outperformed all other methods reported in the literature for the CB513 nonredundant dataset (for the PBs, Q16 = 81.01%, and for the DSSP, Q3 = 85.99% and Q8 = 79.35%).
Journal Article
Combining knowledge distillation and neural networks to predict protein secondary structure
2025
The secondary structure of a protein serves as the foundation for constructing its three-dimensional (3D) structure, which in turn is critical for determining its function and role in biological processes. Therefore, accurately predicting secondary structure not only facilitates the understanding of a protein’s 3D conformation but also provides essential insights into its interactions, functional mechanisms, and potential applications in biomedical research. Deep learning models are particularly effective in protein secondary structure prediction because of their ability to process complex sequence data and extract meaningful patterns, thereby increasing prediction accuracy and efficiency. This study proposes a combined model, ITBM-KD, which integrates an improved temporal convolutional network (TCN), bidirectional recurrent neural network (BiRNN), and multilayer perceptron (MLP) to increase the accuracy of protein secondary structure prediction for octapeptides and tripeptides. By combining one-hot encoding, word vector representation of physicochemical properties, and knowledge distillation with the ProtT5 model, the proposed model achieves excellent performance on multiple datasets. To evaluate its effectiveness, two classic datasets, TS115 and CB513, containing 115 and 513 protein datasets, respectively, were used. In addition, 15,078 protein data points collected from the PDB database from June 6, 2018, to June 6, 2020, were used to further verify the robustness and generalizability of the model. This study improves prediction accuracy and provides an essential model for understanding protein structure and function, especially in resource-limited settings.
Journal Article
Lightweight ProteinUnet2 network for protein secondary structure prediction: a step towards proper evaluation
by
Kotowski, Krzysztof
,
Stapor, Katarzyna
,
Roterman, Irena
in
Accuracy
,
Algorithms
,
Amino Acid Sequence
2022
Background
The prediction of protein secondary structures is a crucial and significant step for ab initio tertiary structure prediction which delivers the information about proteins activity and functions. As the experimental methods are expensive and sometimes impossible, many SS predictors, mainly based on different machine learning methods have been proposed for many years. Currently, most of the top methods use evolutionary-based input features produced by PSSM and HHblits software, although quite recently the embeddings—the new description of protein sequences generated by language models (LM) have appeared that could be leveraged as input features. Apart from input features calculation, the top models usually need extensive computational resources for training and prediction and are barely possible to run on a regular PC. SS prediction as the imbalanced classification problem should not be judged by the commonly used Q3/Q8 metrics. Moreover, as the benchmark datasets are not random samples, the classical statistical null hypothesis testing based on the Neyman–Pearson approach is not appropriate.
Results
We present a lightweight deep network ProteinUnet2 for SS prediction which is based on U-Net convolutional architecture and evolutionary-based input features (from PSSM and HHblits) as well as SPOT-Contact features. Through an extensive evaluation study, we report the performance of ProteinUnet2 in comparison with top SS prediction methods based on evolutionary information (SAINT and SPOT-1D). We also propose a new statistical methodology for prediction performance assessment based on the significance from Fisher–Pitman permutation tests accompanied by practical significance measured by Cohen’s effect size.
Conclusions
Our results suggest that ProteinUnet2 architecture has much shorter training and inference times while maintaining results similar to SAINT and SPOT-1D predictors. Taking into account the relatively long times of calculating evolutionary-based features (from PSSM in particular), it would be worth conducting the predictive ability tests on embeddings as input features in the future. We strongly believe that our proposed here statistical methodology for the evaluation of SS prediction results will be adopted and used (and even expanded) by the research community.
Journal Article
CSI-LSTM: a web server to predict protein secondary structure using bidirectional long short term memory and NMR chemical shifts
by
Wang, Qianqian
,
Xiao Xiongjie
,
Song Linhong
in
Artificial neural networks
,
Internet
,
Long short-term memory
2021
Protein secondary structure provides rich structural information, hence the description and understanding of protein structure relies heavily on it. Identification or prediction of secondary structures therefore plays an important role in protein research. In protein NMR studies, it is more convenient to predict secondary structures from chemical shifts as compared to the traditional determination methods based on inter-nuclear distances provided by NOESY experiment. In recent years, there was a significant improvement observed in deep neural networks, which had been applied in many research fields. Here we proposed a deep neural network based on bidirectional long short term memory (biLSTM) to predict protein 3-state secondary structure using NMR chemical shifts of backbone nuclei. While comparing with the existing methods the proposed method showed better prediction accuracy. Based on the proposed method, a web server has been built to provide protein secondary structure prediction service.
Journal Article
MHTAPred-SS: A Highly Targeted Autoencoder-Driven Deep Multi-Task Learning Framework for Accurate Protein Secondary Structure Prediction
2024
Accurate protein secondary structure prediction (PSSP) plays a crucial role in biopharmaceutics and disease diagnosis. Current prediction methods are mainly based on multiple sequence alignment (MSA) encoding and collaborative operations of diverse networks. However, existing encoding approaches lead to poor feature space utilization, and encoding quality decreases with fewer homologous proteins. Moreover, the performance of simple stacked networks is greatly limited by feature extraction capabilities and learning strategies. To this end, we propose MHTAPred-SS, a novel PSSP framework based on the fusion of six features, including the embedding feature derived from a pre-trained protein language model. First, we propose a highly targeted autoencoder (HTA) as the driver to encode sequences in a homologous protein-independent manner. Second, under the guidance of biological knowledge, we design a protein secondary structure prediction model based on the multi-task learning strategy (PSSP-MTL). Experimental results on six independent test sets show that MHTAPred-SS achieves state-of-the-art performance, with values of 88.14%, 84.89%, 78.74% and 77.15% for Q3, SOV3, Q8 and SOV8 metrics on the TEST2016 dataset, respectively. Additionally, we demonstrate that MHTAPred-SS has significant advantages in single-category and boundary secondary structure prediction, and can finely capture the distribution of secondary structure segments, thereby contributing to subsequent tasks.
Journal Article
Naive Prediction of Protein Backbone Phi and Psi Dihedral Angles Using Deep Learning
2023
Protein structure prediction represents a significant challenge in the field of bioinformatics, with the prediction of protein structures using backbone dihedral angles recently achieving significant progress due to the rise of deep neural network research. However, there is a trend in protein structure prediction research to employ increasingly complex neural networks and contributions from multiple models. This study, on the other hand, explores how a single model transparently behaves using sequence data only and what can be expected from the predicted angles. To this end, the current paper presents data acquisition, deep learning model definition, and training toward the final protein backbone angle prediction. The method applies a simple fully connected neural network (FCNN) model that takes only the primary structure of the protein with a sliding window of size 21 as input to predict protein backbone ϕ and ψ dihedral angles. Despite its simplicity, the model shows surprising accuracy for the ϕ angle prediction and somewhat lower accuracy for the ψ angle prediction. Moreover, this study demonstrates that protein secondary structure prediction is also possible with simple neural networks that take in only the protein amino-acid residue sequence, but more complex models are required for higher accuracies.
Journal Article
Discovering the Ultimate Limits of Protein Secondary Structure Prediction
2021
Secondary structure prediction (SSP) of proteins is an important structural biology technique with many applications. There have been ~300 algorithms published in the past seven decades with fierce competition in accuracy. In the first 60 years, the accuracy of three-state SSP rose from ~56% to 81%; after that, it has long stayed at 81–86%. In the 1990s, the theoretical limit of three-state SSP accuracy had been estimated to be 88%. Thus, SSP is now generally considered not challenging or too challenging to improve. However, we found that the limit of three-state SSP might be underestimated. Besides, there is still much room for improving segment-based and eight-state SSPs, but the limits of these emerging topics have not been determined. This work performs large-scale sequence and structural analyses to estimate SSP accuracy limits and assess state-of-the-art SSP methods. The limit of three-state SSP is re-estimated to be ~92%, 4–5% higher than previously expected, indicating that SSP is still challenging. The estimated limit of eight-state SSP is 84–87%. Several proposals for improving future SSP algorithms are made based on our results. We hope that these findings will help move forward the development of SSP and all its applications.
Journal Article
Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory
by
Yuan, Lu
,
Liu, Yihui
,
Ma, Yuming
in
Accuracy
,
Amino acids
,
bidirectional long short-term memory
2023
Protein secondary structure prediction (PSSP) is a challenging task in computational biology. However, existing models with deep architectures are not sufficient and comprehensive for deep long-range feature extraction of long sequences. This paper proposes a novel deep learning model to improve Protein secondary structure prediction. In the model, our proposed bidirectional temporal convolutional network (BTCN) can extract the bidirectional deep local dependencies in protein sequences segmented by the sliding window technique, the bidirectional long short-term memory (BLSTM) network can extract the global interactions between residues, and our proposed multi-scale bidirectional temporal convolutional network (MSBTCN) can further capture the bidirectional multi-scale long-range features of residues while preserving the hidden layer information more comprehensively. In particular, we also propose that fusing the features of 3-state and 8-state Protein secondary structure prediction can further improve the prediction accuracy. Moreover, we also propose and compare multiple novel deep models by combining bidirectional long short-term memory with temporal convolutional network (TCN), reverse temporal convolutional network (RTCN), multi-scale temporal convolutional network (multi-scale bidirectional temporal convolutional network), bidirectional temporal convolutional network and multi-scale bidirectional temporal convolutional network, respectively. Furthermore, we demonstrate that the reverse prediction of secondary structure outperforms the forward prediction, suggesting that amino acids at later positions have a greater impact on secondary structure recognition. Experimental results on benchmark datasets including CASP10, CASP11, CASP12, CASP13, CASP14, and CB513 show that our methods achieve better prediction performance compared to five state-of-the-art methods.
Journal Article
Ensemble of Template-Free and Template-Based Classifiers for Protein Secondary Structure Prediction
by
Pedrini, Helio
,
Dias, Zanoni
,
de Oliveira, Gabriel Bianchin
in
Algorithms
,
Alzheimer's disease
,
Amino acids
2021
Protein secondary structures are important in many biological processes and applications. Due to advances in sequencing methods, there are many proteins sequenced, but fewer proteins with secondary structures defined by laboratory methods. With the development of computer technology, computational methods have (started to) become the most important methodologies for predicting secondary structures. We evaluated two different approaches to this problem—driven by the recent results obtained by computational methods in this task—(i) template-free classifiers, based on machine learning techniques; and (ii) template-based classifiers, based on searching tools. Both approaches are formed by different sub-classifiers—six for template-free and two for template-based, each with a specific view of the protein. Our results show that these ensembles improve the results of each approach individually.
Journal Article