Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,146
result(s) for
"Protein seeding"
Sort by:
Aggregated Tau activates NLRP3–ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo
by
Cremers, Niels
,
Vanoosthuyse, Alexandre
,
Brône, Bert
in
Alzheimer's disease
,
Apoptosis
,
Inflammasomes
2019
Brains of Alzheimer’s disease patients are characterized by the presence of amyloid plaques and neurofibrillary tangles, both invariably associated with neuroinflammation. A crucial role for NLRP3–ASC inflammasome [NACHT, LRR and PYD domains-containing protein 3 (NLRP3)–Apoptosis-associated speck-like protein containing a CARD (ASC)] in amyloid-beta (Aβ)-induced microgliosis and Aβ pathology has been unequivocally identified. Aβ aggregates activate NLRP3–ASC inflammasome (Halle et al. in Nat Immunol 9:857–865, 2008) and conversely NLRP3–ASC inflammasome activation exacerbates amyloid pathology in vivo (Heneka et al. in Nature 493:674–678, 2013), including by prion-like ASC-speck cross-seeding (Venegas et al. in Nature 552:355–361, 2017). However, the link between inflammasome activation, as crucial sensor of innate immunity, and Tau remains unexplored. Here, we analyzed whether Tau aggregates acting as prion-like Tau seeds can activate NLRP3–ASC inflammasome. We demonstrate that Tau seeds activate NLRP3–ASC-dependent inflammasome in primary microglia, following microglial uptake and lysosomal sorting of Tau seeds. Next, we analyzed the role of inflammasome activation in prion-like or templated seeding of Tau pathology and found significant inhibition of exogenously seeded Tau pathology by ASC deficiency in Tau transgenic mice. We furthermore demonstrate that chronic intracerebral administration of the NLRP3 inhibitor, MCC950, inhibits exogenously seeded Tau pathology. Finally, ASC deficiency also decreased non-exogenously seeded Tau pathology in Tau transgenic mice. Overall our findings demonstrate that Tau-seeding competent, aggregated Tau activates the ASC inflammasome through the NLRP3–ASC axis, and we demonstrate an exacerbating role of the NLRP3–ASC axis on exogenously and non-exogenously seeded Tau pathology in Tau mice in vivo. The NLRP3–ASC inflammasome, which is an important sensor of innate immunity and intensively explored for its role in health and disease, hence presents as an interesting therapeutic approach to target three crucial pathogenetic processes in AD, including prion-like seeding of Tau pathology, Aβ pathology and neuroinflammation.
Journal Article
Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans
2016
Misfolded alpha-synuclein (AS) and other neurodegenerative disorder proteins display prion-like transmission of protein aggregation. Factors responsible for the initiation of AS aggregation are unknown. To evaluate the role of amyloid proteins made by the microbiota we exposed aged rats and transgenic
C
.
elegans
to
E
.
coli
producing the extracellular bacterial amyloid protein curli. Rats exposed to curli-producing bacteria displayed increased neuronal AS deposition in both gut and brain and enhanced microgliosis and astrogliosis compared to rats exposed to either mutant bacteria unable to synthesize curli, or to vehicle alone. Animals exposed to curli producing bacteria also had more expression of TLR2, IL-6 and TNF in the brain than the other two groups. There were no differences among the rat groups in survival, body weight, inflammation in the mouth, retina, kidneys or gut epithelia, and circulating cytokine levels. AS-expressing
C
.
elegans
fed on curli-producing bacteria also had enhanced AS aggregation. These results suggest that bacterial amyloid functions as a trigger to initiate AS aggregation through cross-seeding and also primes responses of the innate immune system.
Journal Article
Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy
2022
Activation of microglia is a prominent pathological feature in tauopathies, including Alzheimer’s disease. How microglia activation contributes to tau toxicity remains largely unknown. Here we show that nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, activated by tau, drives microglial-mediated tau propagation and toxicity. Constitutive activation of microglial NF-κB exacerbated, while inactivation diminished, tau seeding and spreading in young PS19 mice. Inhibition of NF-κB activation enhanced the retention while reduced the release of internalized pathogenic tau fibrils from primary microglia and rescued microglial autophagy deficits. Inhibition of microglial NF-κB in aged PS19 mice rescued tau-mediated learning and memory deficits, restored overall transcriptomic changes while increasing neuronal tau inclusions. Single cell RNA-seq revealed that tau-associated disease states in microglia were diminished by NF-κB inactivation and further transformed by constitutive NF-κB activation. Our study establishes a role for microglial NF-κB signaling in mediating tau spreading and toxicity in tauopathy.
Wang et al show that microglial NF-κB activation is essential for tau spreading and tau-mediated spatial learning and memory deficits in tauopathy mice. Inactivation of NF-κB reversed tau associated microglial states and rescued autophagy deficits.
Journal Article
Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease
2021
Sporadic Creutzfeldt-Jakob disease is a fatal neurodegenerative disease caused by misfolded prion proteins (PrPSc). Effective therapeutics are currently not available and accurate diagnosis can be challenging. Clinical diagnostic criteria use a combination of characteristic neuropsychiatric symptoms, CSF proteins 14-3-3, MRI, and EEG. Supportive biomarkers, such as high CSF total tau, could aid the diagnostic process. However, discordant studies have led to controversies about the clinical value of some established surrogate biomarkers. Development and clinical application of disease-specific protein aggregation and amplification assays, such as real-time quaking induced conversion (RT-QuIC), have constituted major breakthroughs for the confident pre-mortem diagnosis of sporadic Creutzfeldt-Jakob disease. Updated criteria for the diagnosis of sporadic Creutzfeldt-Jakob disease, including application of RT-QuIC, should improve early clinical confirmation, surveillance, assessment of PrPSc seeding activity in different tissues, and trial monitoring. Moreover, emerging blood-based, prognostic, and potentially pre-symptomatic biomarker candidates are under investigation.
Journal Article
Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE
by
Focke, Carola
,
Willem, Michael
,
Colombo, Alessio
in
Aging
,
Alzheimer's disease
,
Amyloidogenesis
2019
Coding variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are associated with late-onset Alzheimer’s disease (AD). We demonstrate that amyloid plaque seeding is increased in the absence of functional Trem2. Increased seeding is accompanied by decreased microglial clustering around newly seeded plaques and reduced plaque-associated apolipoprotein E (ApoE). Reduced ApoE deposition in plaques is also observed in brains of AD patients carrying TREM2 coding variants. Proteomic analyses and microglia depletion experiments revealed microglia as one origin of plaque-associated ApoE. Longitudinal amyloid small animal positron emission tomography demonstrates accelerated amyloidogenesis in Trem2 loss-of-function mutants at early stages, which progressed at a lower rate with aging. These findings suggest that in the absence of functional Trem2, early amyloidogenesis is accelerated due to reduced phagocytic clearance of amyloid seeds despite reduced plaque-associated ApoE.
Journal Article
α-Synuclein phosphorylation at serine 129 occurs after initial protein deposition and inhibits seeded fibril formation and toxicity
by
Erskine, Daniel
,
Ardah, Mustafa T.
,
Santos, Patricia
in
Agglomeration
,
alpha-Synuclein - genetics
,
alpha-Synuclein - metabolism
2022
α-Synuclein (α-syn) phosphorylation at serine 129 (pS129–α-syn) is substantially increased in Lewy body disease, such as Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). However, the pathogenic relevance of pS129–α-syn remains controversial, so we sought to identify when pS129 modification occurs during α-syn aggregation and its role in initiation, progression and cellular toxicity of disease. Using diverse aggregation assays, including real-time quaking-induced conversion (RT-QuIC) on brain homogenates from PD and DLB cases, we demonstrated that pS129–α-syn inhibits α-syn fibril formation and seeded aggregation.We also identified lower seeding propensity of pS129–α-syn in cultured cells and correspondingly attenuated cellular toxicity. To build upon these findings, we developed a monoclonal antibody (4B1) specifically recognizing nonphosphorylated S129–α-syn (WT–α-syn) and noted that S129 residue is more efficiently phosphorylated when the protein is aggregated. Using this antibody, we characterized the time-course of α-syn phosphorylation in organotypic mouse hippocampal cultures and mice injected with α-syn preformed fibrils, and we observed aggregation of nonphosphorylated α-syn followed by later pS129–α-syn. Furthermore, in postmortem brain tissue from PD and DLB patients, we observed an inverse relationship between relative abundance of nonphosphorylated α-syn and disease duration. These findings suggest that pS129–α-syn occurs subsequent to initial protein aggregation and apparently inhibits further aggregation. This could possibly imply a potential protective role for pS129–α-syn, which has major implications for understanding the pathobiology of Lewy body disease and the continued use of reduced pS129–α-syn as a measure of efficacy in clinical trials.
Journal Article
Amyloid particles facilitate surface-catalyzed cross-seeding by acting as promiscuous nanoparticles
by
Xue, Wei-Feng
,
Marchante, Ricardo
,
Aubrey, Liam D.
in
Amyloid - metabolism
,
Amyloidogenic Proteins - metabolism
,
Assembly
2021
Amyloid seeds are nanometer-sized protein particles that accelerate amyloid assembly as well as propagate and transmit the amyloid protein conformation associated with a wide range of protein misfolding diseases. However, seeded amyloid growth through templated elongation at fibril ends cannot explain the full range of molecular behaviors observed during cross-seeded formation of amyloid by heterologous seeds. Here, we demonstrate that amyloid seeds can accelerate amyloid formation via a surface catalysis mechanism without propagating the specific amyloid conformation associated with the seeds. This type of seeding mechanism is demonstrated through quantitative characterization of the cross-seeded assembly reactions involving two nonhomologous and unrelated proteins: the human Aβ42 peptide and the yeast prion–forming protein Sup35NM. Our results demonstrate experimental approaches to differentiate seeding by templated elongation from nontemplated amyloid seeding and rationalize the molecular mechanism of the cross-seeding phenomenon as a manifestation of the aberrant surface activities presented by amyloid seeds as nanoparticles.
Journal Article
Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel
2018
α-Synuclein (aSyn) fibrillar polymorphs have distinct in vitro and in vivo seeding activities, contributing differently to synucleinopathies. Despite numerous prior attempts, how polymorphic aSyn fibrils differ in atomic structure remains elusive. Here, we present fibril polymorphs from the full-length recombinant human aSyn and their seeding capacity and cytotoxicity in vitro. By cryo-electron microscopy helical reconstruction, we determine the structures of the two predominant species, a rod and a twister, both at 3.7 Å resolution. Our atomic models reveal that both polymorphs share a kernel structure of a bent β-arch, but differ in their inter-protofilament interfaces. Thus, different packing of the same kernel structure gives rise to distinct fibril polymorphs. Analyses of disease-related familial mutations suggest their potential contribution to the pathogenesis of synucleinopathies by altering population distribution of the fibril polymorphs. Drug design targeting amyloid fibrils in neurodegenerative diseases should consider the formation and distribution of concurrent fibril polymorphs.
The intrinsically disordered protein alpha-synuclein (aSyn) forms polymorphic fibrils. Here the authors provide molecular insights into aSyn fibril polymorphism and present the cryo-EM structures of the two predominant species, a rod and a twister both determined at 3.7 Å resolution.
Journal Article
Temperature protocols to guide selective self-assembly of competing structures
by
Frenkel, Daan
,
Bupathy, Arunkumar
,
Sastry, Srikanth
in
Aggregates
,
Applied Physical Sciences
,
Inverse design
2022
Multicomponent self-assembly mixtures offer the possibility of encoding multiple target structures with the same set of interacting components. Selective retrieval of one of the stored structures has been attempted by preparing an initial state that favors the assembly of the required target, through seeding, concentration patterning, or specific choices of interaction strengths. This may not be possible in an experiment where on-the-fly reconfiguration of the building blocks to switch functionality may be required. In this paper, we explore principles of inverse design of a multicomponent, self-assembly mixture capable of encoding two competing structures that can be selected through simple temperature protocols. We design the target structures to realize the generic situation in which one of the targets has the lower nucleation barrier, while the other is globally more stable. We observe that, to avoid the formation of spurious or chimeric aggregates, the number of neighboring component pairs that occur in both structures should be minimal. Our design also requires the inclusion of components that are part of only one of the target structures. We observe, however, that to maximize the selectivity of retrieval, the component library itself should be maximally shared by the two targets, within such a constraint. We demonstrate that temperature protocols can be designed that lead to the formation of either one of the target structures with high selectivity. We discuss the important role played by secondary aggregation products in improving selectivity, which we term “vestigial aggregates.”
Journal Article
Cofactors are essential constituents of stable and seeding-active tau fibrils
by
Zeng, Zhikai
,
Han, Songi
,
Rauch, Jennifer N.
in
Aggregates
,
Alzheimer Disease - metabolism
,
Alzheimer Disease - pathology
2018
Amyloid fibrils are cross-β–rich aggregates that are exceptionally stable forms of protein assembly. Accumulation of tau amyloid fibrils is involved in many neurodegenerative diseases, including Alzheimer’s disease (AD). Heparin-induced aggregates have been widely used and assumed to be a good tau amyloid fibril model for most biophysical studies. Here we show that mature fibrils made of 4R tau variants, prepared with heparin or RNA, spontaneously depolymerize and release monomers when their cofactors are removed. We demonstrate that the cross-β-sheet assembly formed in vitro with polyanion addition is unstable at room temperature. We furthermore demonstrate high seeding capacity with transgenic AD mouse brain-extracted tau fibrils in vitro that, however, is exhausted after one generation, while supplementation with RNA cofactors resulted in sustained seeding over multiple generations. We suggest that tau fibrils formed in brains are supported by unknown cofactors and inhere higher-quality packing, as reflected in a more distinct conformational arrangement in the mouse fibril-seeded, compared with heparin-induced, tau fibrils. Our study suggests that the role of cofactors in tauopathies is a worthy focus of future studies, as they may be viable targets for diagnosis and therapeutics.
Journal Article