Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
927 result(s) for "Proto-Oncogene Proteins c-mdm2 - chemistry"
Sort by:
Ultra-large chemical libraries for the discovery of high-affinity peptide binders
High-diversity genetically-encoded combinatorial libraries (10 8 −10 13 members) are a rich source of peptide-based binding molecules, identified by affinity selection. Synthetic libraries can access broader chemical space, but typically examine only ~ 10 6 compounds by screening. Here we show that in-solution affinity selection can be interfaced with nano-liquid chromatography-tandem mass spectrometry peptide sequencing to identify binders from fully randomized synthetic libraries of 10 8 members—a 100-fold gain in diversity over standard practice. To validate this approach, we show that binders to a monoclonal antibody are identified in proportion to library diversity, as diversity is increased from 10 6 –10 8 . These results are then applied to the discovery of p53-like binders to MDM2, and to a family of 3–19 nM-affinity, α/β-peptide-based binders to 14-3-3. An X-ray structure of one of these binders in complex with 14-3-3σ is determined, illustrating the role of β-amino acids in facilitating a key binding contact. Synthetic peptide libraries can access broad chemical space, but generally examine only ~ 10 6  compounds. Here, the authors show that in-solution affinity selection, interfaced with nLC-MS/MS sequencing, can identify binders from fully randomized synthetic libraries of 10 8 members.
Molecular basis of USP7 inhibition by selective small-molecule inhibitors
Ubiquitination controls the stability of most cellular proteins, and its deregulation contributes to human diseases including cancer. Deubiquitinases remove ubiquitin from proteins, and their inhibition can induce the degradation of selected proteins, potentially including otherwise ‘undruggable’ targets. For example, the inhibition of ubiquitin-specific protease 7 (USP7) results in the degradation of the oncogenic E3 ligase MDM2, and leads to re-activation of the tumour suppressor p53 in various cancers. Here we report that two compounds, FT671 and FT827, inhibit USP7 with high affinity and specificity in vitro and within human cells. Co-crystal structures reveal that both compounds target a dynamic pocket near the catalytic centre of the auto-inhibited apo form of USP7, which differs from other USP deubiquitinases. Consistent with USP7 target engagement in cells, FT671 destabilizes USP7 substrates including MDM2, increases levels of p53, and results in the transcription of p53 target genes, induction of the tumour suppressor p21, and inhibition of tumour growth in mice. Small molecules are identified that inhibit the ubiquitin-specific protease USP7 with high affinity and specificity as explained by co-crystal structures, and are shown to reduce tumour growth in mice. Interfering inhibitors show toxicity to tumours Deubiquitinating enzymes remove the small modifier protein ubiquitin from target substrates regulating their stability. One such enzyme, USP7, is a potential target for anti-cancer therapy, as its inhibition would result in the degradation of the ubiquitinated oncoprotein MDM2, leading to reactivation of the tumour suppressor protein p53. However, selective inhibitors of USP7 have remained elusive. Here, David Komander and colleagues identify two small molecules that inhibit USP7 with high affinity and specificity both in vitro and within cells. The authors provide structural insights into the mechanism of action of these inhibitors and demonstrate their ability to inhibit tumour growth. Elsewhere in this issue, Ingrid Wertz and colleagues independently develop two such USP7 inhibitors and also demonstrate their toxicity towards tumour cells.
EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction
Epigallocatechin gallate (EGCG) from green tea can induce apoptosis in cancerous cells, but the underlying molecular mechanisms remain poorly understood. Using SPR and NMR, here we report a direct, μM interaction between EGCG and the tumor suppressor p53 ( K D  = 1.6 ± 1.4 μM), with the disordered N-terminal domain (NTD) identified as the major binding site ( K D  = 4 ± 2 μM). Large scale atomistic simulations (>100 μs), SAXS and AUC demonstrate that EGCG-NTD interaction is dynamic and EGCG causes the emergence of a subpopulation of compact bound conformations. The EGCG-p53 interaction disrupts p53 interaction with its regulatory E3 ligase MDM2 and inhibits ubiquitination of p53 by MDM2 in an in vitro ubiquitination assay, likely stabilizing p53 for anti-tumor activity. Our work provides insights into the mechanisms for EGCG’s anticancer activity and identifies p53 NTD as a target for cancer drug discovery through dynamic interactions with small molecules. Epigallocatechin gallate (EGCG) is a catechin flavonoid which induces apoptosis in cancerous cells, but the underlying molecular mechanisms remain poorly understood. Here authors use an interdisciplinary approach to show a direct interaction between EGCG and the tumor suppressor p53 and demonstrate that EGCG inhibits ubiquitination of p53 by MDM2.
Reduced structural rigidity of MDMX protein enhances binding to TP53 mRNA
The two murine double minute (MDM) family members, MDM2 and MDMX, are a well-established negative regulator of p53 activity. Under DNA damage conditions, MDM2 and MDMX are phosphorylated near their RING domains (serine 395 at MDM2 and serine 403 at MDMX) and switch to act as p53 positive regulators. MDMX binds to TP53 mRNA and acts as a chaperone for RNA structure, enabling MDM2 to bind. This interaction enhances TP53 mRNA translation, leading to increased p53 protein production. While the biological significance of this interaction has been described, the specific features of the MDMX–RNA interaction remain poorly understood. We used various MDMX protein constructs to characterize binding to TP53 mRNA and identified that the interaction mediated by the RING domain is modulated by the presence of other domains. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) and binding assays in high salt conditions and various pH demonstrate that the whole protein participates in RNA interaction, with the C-terminal domain likely providing the contact with RNA by electrostatic forces. We show that protein structural changes induced by the chelating agent EDTA or the reducing agent TCEP enhance RNA binding by promoting partial structural destabilization of the protein. Our findings suggest that the MDMX/TP53 mRNA interaction is complex, with the RING domain binding to RNA and being supported by the entire protein, which acts as a scaffold for the RNA interaction. These results contribute to a better understanding of MDMX’s role in TP53 mRNA binding and provide valuable insights for future investigation of the MDM2–MDMX–TP53 mRNA complex, which is crucial for p53 stabilization and activation under DNA-damaging conditions.
Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity
MDM2 mutations that prevent E2–ubiquitin binding without altering RING domain structure lead to loss of E3-ligase activity, while the ability to limit p53 transcriptional activity is retained, allowing cells to respond more quickly to cellular stress. MDM2–MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2–MDMX–E2(UbcH5B)–ubiquitin complex, we designed MDM2 mutants that prevent E2–ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53′s transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors.
Cyclic peptide structure prediction and design using AlphaFold2
Small cyclic peptides have gained significant traction as a therapeutic modality; however, the development of deep learning methods for accurately designing such peptides has been slow, mostly due to the lack of sufficiently large training sets. Here, we introduce AfCycDesign, a deep learning approach for accurate structure prediction, sequence redesign, and de novo hallucination of cyclic peptides. Using AfCycDesign, we identified over 10,000 structurally-diverse designs predicted to fold into the designed structures with high confidence. X-ray crystal structures for eight tested de novo designed sequences match very closely with the design models (RMSD < 1.0 Å), highlighting the atomic level accuracy in our approach. Further, we used the set of hallucinated peptides as starting scaffolds to design binders with nanomolar IC 50 against MDM2 and Keap1. The computational methods and scaffolds developed here provide the basis for the custom design of peptides for diverse protein targets and therapeutic applications. AfCycDesign: Cyclic offset to the relative positional encoding in AlphaFold2 enables accurate structure prediction, sequence redesign, and de novo hallucination of cyclic peptide monomers and binders.
Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells
Increasing residual helicity in the p53 transcriptional activation domain strengthened interactions with Mdm2, resulting in alterations in p53 protein dynamics, impaired transcription of target genes and failure to promote cell cycle arrest. Levels of residual structure in disordered interaction domains determine in vitro binding affinities, but whether they exert similar roles in cells is not known. Here, we show that increasing residual p53 helicity results in stronger Mdm2 binding, altered p53 dynamics, impaired target gene expression and failure to induce cell cycle arrest upon DNA damage. These results establish that residual structure is an important determinant of signaling fidelity in cells.
Novel Inhibitors for MDM2-MDM4 E3 Ligase Potently Induce p53-Indepedent Apoptosis in Drug-Resistant Leukemic Cells
MDM2 and MDM4 are major negative regulators of tumor suppressor p53. Beyond regulating p53, MDM2 possesses p53-independent activity in promoting cell cycle progression and tumorigenesis via its RING domain ubiquitin E3 ligase activity. MDM2 and MDM4 form heterodimer polyubiquitin E3 ligases via their RING domain interaction. Inhibitors disrupting p53 interaction with MDM2/MDM4 are in clinical trials in patients bearing wild-type p53 cancers. However, these inhibitors are not designed to work for p53-null/mutant cancer cells. Owing to the importance of the E3 ligase of MDM2 in its p53-independent oncogenic activity, inhibitors targeting the E3 ligase activity of MDM2-MDM4 are desirable for p53-mutant cancer cells. Here, we report the development of such inhibitors with pro-apoptotic activity in p53-null leukemic cells. Among analogues of MDM2-MDM4 E3 ligase inhibitors, we initially identified MMRi36 as a potent pro-apoptotic compound in p53-null leukemic cells with acquired drug resistance. MMRi36 acts as an activator of MDM2-MDM4 E3 ligase by stabilizing MDM2-MDM4 heterodimers and promotes MDM2/MDM4 degradation in cells. Interestingly, replacement of the sulfur in 1,3,4-thiadiazole MMRi36 with a carbon led to identification of pyrazole MMRi36C that dissociates the MDM2-MDM4 RING heterodimers, inhibits the E3 ligase activity of the complex, and induces p53 protein accumulation, but retains the p53-independent pro-apoptotic activity. A brief SAR study identified a fluorine derivative of MMRi36C with improved pro-apoptotic activity. This study discovered a novel class of compound that targets MDM2-MDM4 ubiquitin E3 ligase activity for apoptosis induction in p53-mutant cancer cells.
Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization
Activation of p53 tumor suppressor by antagonizing its negative regulator murine double minute (MDM)2 has been considered an attractive strategy for cancer therapy and several classes of p53-MDM2 binding inhibitors have been developed. However, these compounds do not inhibit the p53-MDMX interaction, and their effectiveness can be compromised in tumors overexpressing MDMX. Here, we identify small molecules that potently block p53 binding with both MDM2 and MDMX by inhibitor-driven homo- and/or heterodimerization of MDM2 and MDMX proteins. Structural studies revealed that the inhibitors bind into and occlude the p53 pockets of MDM2 and MDMX by inducing the formation of dimeric protein complexes kept together by a dimeric small-molecule core. This mode of action effectively stabilized p53 and activated p53 signaling in cancer cells, leading to cell cycle arrest and apoptosis. Dual MDM2/MDMX antagonists restored p53 apoptotic activity in the presence of high levels of MDMX and may offer a more effective therapeutic modality for MDMX-overexpressing cancers.
Mdm2: Open questions
The Mdm2 oncoprotein and its association with p53 were discovered 30 years ago, and a cornucopia of activities and regulatory pathways have been associated with it. In this review, we will raise questions about Mdm2 and its cousin Mdm4 that we consider worth pursuing in future research, reaching from molecular structures and intracellular activities all the way to development, evolution, and cancer therapy. We anticipate that such research will not only close a few gaps in our knowledge but could add new dimensions to our current view. This compilation of questions contributes to the preparation for the 10th Mdm2 Workshop in Tokyo.