Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
317 result(s) for "Protokoll"
Sort by:
Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT
Nowadays, the Internet of Things (IoT) plays a significant role in the Internet world. The IoT is a system which integrates the computing devices, digital machines provided with unique identifiers which have the ability to transfer the data over the network via the better route. IoT is also expected to generate large amounts of data, the consequent necessity for quick aggregation of the data and process such data more effectively. In this paper, a multi-objective fractional gravitational search algorithm is proposed to find the optimal cluster head for energy efficient routing protocol in IoT network. To extend the lifetime of the node, the Fractional Gravitational Search Algorithm (FGSA) is proposed to find out the optimal cluster head node iteratively in the IoT network model. The cluster head node is selected in FGSA that is evaluated by the fitness function using multiple objectives such as distance, delay, link lifetime and energy, termed as multi-objective FGSA (MOFGSA). The simulation results and performance is analyzed using MATLAB implementation. The performance is compared with existing algorithms like Artificial Bee Colony, Gravitational Search Algorithm and multi-particle swarm immune cooperative algorithm. Thus, the proposed MOFGSA algorithm ensures to prolong the lifetime of IoT nodes.
collapse of the Kyoto Protocol and the struggle to slow global warming
Even as the evidence of global warming mounts, the international response to this serious threat is coming unraveled. The United States has formally withdrawn from the 1997 Kyoto Protocol; other key nations are facing difficulty in meeting their Kyoto commitments; and developing countries face no limit on their emissions of the gases that cause global warming. In this clear and cogent book-reissued in paperback with an afterword that comments on recent events--David Victor explains why the Kyoto Protocol was never likely to become an effective legal instrument. He explores how its collapse offers opportunities to establish a more realistic alternative. Global warming continues to dominate environmental news as legislatures worldwide grapple with the process of ratification of the December 1997 Kyoto Protocol. The collapse of the November 2000 conference at the Hague showed clearly how difficult it will be to bring the Kyoto treaty into force. Yet most politicians, policymakers, and analysts hailed it as a vital first step in slowing greenhouse warming. David Victor was not among them. Kyoto's fatal flaw, Victor argues, is that it can work only if emissions trading works. The Protocol requires industrialized nations to reduce their emissions of greenhouse gases to specific targets. Crucially, the Protocol also provides for so-called \"emissions trading,\" whereby nations could offset the need for rapid cuts in their own emissions by buying emissions credits from other countries. But starting this trading system would require creating emission permits worth two trillion dollars--the largest single invention of assets by voluntary international treaty in world history. Even if it were politically possible to distribute such astronomical sums, the Protocol does not provide for adequate monitoring and enforcement of these new property rights. Nor does it offer an achievable plan for allocating new permits, which would be essential if the system were expanded to include developing countries. The collapse of the Kyoto Protocol--which Victor views as inevitable--will provide the political space to rethink strategy. Better alternatives would focus on policies that control emissions, such as emission taxes. Though economically sensible, however, a pure tax approach is impossible to monitor in practice. Thus, the author proposes a hybrid in which governments set targets for both emission quantities and tax levels. This offers the important advantages of both emission trading and taxes without the debilitating drawbacks of each. Individuals at all levels of environmental science, economics, public policy, and politics-from students to professionals--and anyone else hoping to participate in the debate over how to slow global warming will want to read this book.
Improving the Accessibility and Efficiency of Proton Irradiations for 4He/3He Thermochronology
Synthesizing uniform and high concentrations of 3He within minerals via high‐energy proton irradiation is paramount for 4He/3He thermochronology and helium diffusion kinetic studies. Proton irradiations of geological material have hitherto exclusively been routinely conducted at the Francis H. Burr Proton Therapy Center (FHB); we thus explored alternative irradiation protocols at two European‐based facilities with the intention to improve the accessibility and efficiency in obtaining 4He/3He data. We conducted a single irradiation at the Paul Scherrer Institute (PSI) using an approach most similar to that used at FHB (wide, high‐energy beam), and four irradiations at the Helmholtz Zentrum Berlin (HZB) using a newly developed in‐vacuum irradiation protocol in a narrow, lower‐energy but high‐intensity beam. Internal shards of Durango apatite were irradiated in all experiments; 4He/3He release spectra and bulk 3He concentrations of PSI and HZB‐irradiated Durango shards were compared to those from FHB to assess the quality of each experiment in terms of the quantity and uniformity of synthesized 3He. While 3He was uniformly synthesized in PSI‐irradiated Durango shards, the bulk 3He concentration was below the required threshold due to limitations on the maximum allotted proton flux. Over the course of four irradiation experiments at HZB, the protocol evolved to ensure that uniform and high concentrations of 3He can be consistently induced. Furthermore, we demonstrate how HZB irradiations can be replicated using computer simulations, permitting the use of simulations to inform future modifications of the irradiation protocol in order to optimize the uniformity of the 3He distribution across all irradiated samples. Key Points 4He/3He Thermochronology requires the synthesis of uniform and high concentrations of 3He within minerals via proton irradiation Durango apatite was irradiated at three proton irradiation facilities for quality assessment and comparison A new in‐vacuum and high‐intensity irradiation protocol was established that has potential to improve the throughput of 4He/3He analyses
ECRP: an energy-aware cluster-based routing protocol for wireless sensor networks
Energy conservation is the main issue in wireless sensor networks. Many existing clustering protocols have been proposed to balance the energy consumption and maximize the battery lifetime of sensor nodes. However, these protocols suffer from the excessive overhead due to repetitive clustering resulting in high-energy consumption. In this paper, we propose energy-aware cluster-based routing protocol (ECRP) in which not only the cluster head (CH) role rotates based on energy around all cluster members until the end of network functioning to avoid frequent re-clustering, but also it can adapt the network topology change. Further, ECRP introduces a multi-hop routing algorithm so that the energy consumption is minimized and balanced. As well, a fault-tolerant mechanism is proposed to cope up with the failure of CHs and relay nodes. We perform extensive simulations on the proposed protocol using different network scenarios. The simulation results demonstrate the superiority of ECRP compared with recent and relevant existing protocols in terms of main performance metrics.
Revisiting trade and environment nexus in South Africa: fresh evidence from new measure
The paper revisits the dynamic effect of trade openness on environmental quality in South Africa by employing a fresh proxy of trade openness suggested by Squalli and Wilson (The World Economy 34:1745–1770, 2011 ) over the period 1960–2016. Contrary to the previous literature, the new proxy is constructed to take into consideration both South Africa’s trade share of its GDP and its relative size of trade in relation to the world trade in a specified period of time. Adopting this novel approach to capture openness, the study applies the autoregressive distributed lag (ARDL) bounds test for cointegration approach to investigate the long-run association between trade openness and environmental quality. Our findings show that the results of the long run are materially different from those of the short run. While trade openness has a significantly beneficial impact on CO 2 emissions in the short run, it has a measurably detrimental consequence on it in the long run. These findings are new to the literature and contrast with the previous studies. While confirming the existence of an inverted U-shaped curve that validates the existence of environmental Kuznets curve (EKC) hypothesis for South Africa, our results are further supported by the non-linear ARDL model, which reveals evidence of asymmetric pass-through effects of changes in trade openness on CO 2 emissions. This paper suggests that South Africa’s policymakers must continue to improve trade policy reform with complementary policies to create a less carbon-intensive environment and promote lasting value for reductions of greenhouse gas (GHG) emissions and constantly support the establishment of greener technologies that ultimately lower CO 2 emissions.
Design and analysis of RPL objective functions using variant routing metrics for IoT applications
The main objective of Internet of Things (IoT) is to connect almost all the devices anywhere and everywhere in the world. IoT network is heterogeneous in nature, hence routing the data packets in this network is a big challenge. Routing Protocol for Low Power Lossy Network (RPL), has been designed by Internet Engineering Task Force (IETF) for such type of network. The existing design of RPL Objective Function (OF) is insufficient to cover all the issues of IoT applications. In this paper, the proposed OFs designs using various routing metrics are used to enhance the performance of the IoT applications. The analysis for various scenarios for these designs shows that only traditional hop and Expected Transmission Count (ETX) routing parameters will not fit for the smart applications need. The routing metric selection according to the application requirement is the principal idea of the proposed design. Three metrics ETX, Content and Energy, single and combination with each other are used to enhance the design of objective function of RPL for IoT applications. The enhanced triggering technique is added in these designs for the improvement of RPL. This technique will eliminate the cumulative effect of the short-listen problem of default trickle timer. The result analysis done using Cooja simulator along with Contiki Operating System (OS) states that, all the designs are performing well in one or other manner than the traditional OF. Energy combined with Content (EC) and aggregation with Enhanced timer (EC_En_Timer) design gives better result for Packet Delivery Ratio (PDR) and Latency Delay (LD) as compared to default OF design. Residual Energy (RE) combined with ETX (EE) and conjunction with Enhanced timer (EE_En_Timer) design works well for energy consumption. Overhead is very less in RE and ETX design. Conversion time is reduced by almost 50% in an En_Timer design. Higher PDR and low delay values of EC and EC_En_Timer design encourages its use in health monitoring application where reliability is essential. Low energy consumption results of RE, EE and EE_En_Timer designs are comfortable for forest monitoring application, as energy is a crucial aspect. This comparative result outcome will help to fulfill the IoT application requirements.
Advancements in laser technologies for skin rejuvenation: A comprehensive review of efficacy and safety
Laser technology has fundamentally transformed the landscape of dermatology, offering nuanced solutions for skin rejuvenation and resurfacing. This paper aims to explore the spectrum of laser technologies, from ablative to non-ablative and fractional lasers, their mechanisms, benefits, and tailored applications for diverse skin conditions. As we delve into the intricacies of each technology, we also consider the scientific advancements that have made these treatments safer and more effective, promising a new horizon in skin rejuvenation. This comprehensive analysis seeks to evaluate recent advancements in laser technology for skin rejuvenation, focusing on efficacy, safety, and patient satisfaction. The selection criteria for studies in this publication focused on recent, peer-reviewed articles from the last 20 years, emphasizing advancements in laser technologies for skin rejuvenation. Our comprehensive review involved searches in PubMed, Cochrane, Scopus and Google Scholar using keywords like \"skin rejuvenation,\" \"laser technology,\" \"efficacy,\" \"safety,\" and \"dermatology.\" This approach focused on inclusion of recent research and perspectives on the efficacy and safety of laser treatments in the field of dermatology. Our literature review reveals advancements in laser skin resurfacing technologies, notably fractional lasers for minimal downtime rejuvenation, ablative lasers for precise tissue vaporization, and non-ablative lasers for coagulation effect promoting collagen with reduced recovery. Hybrid and picosecond lasers are highlighted for their versatility and effectiveness in addressing a wide array of skin concerns. The findings also emphasize the development of safer treatment protocols for ethnic skin, significantly reducing risks like hyperpigmentation and scarring, thus broadening the scope of effective dermatological solutions. This extensive review of advancements in laser technologies for skin rejuvenation underscores a remarkable evolution in dermatological treatments, offering an expansive overview of the efficacy, safety, and patient satisfaction associated with these interventions. Furthermore, the exploration of combination treatments and laser-assisted drug delivery represents a frontier in dermatological practice, offering synergistic effects that could amplify the therapeutic benefits of laser treatments.
The impact of biomass energy consumption on pollution: evidence from 80 developed and developing countries
The aim of this research is to explore the effect of biomass energy consumption on CO 2 emissions in 80 developed and developing countries. To achieve robustness, the system generalised method of moment was used and several control variables were incorporated into the model including real GDP, fossil fuel consumption, hydroelectricity production, urbanisation, population, foreign direct investment, financial development, institutional quality and the Kyoto protocol. Relying on the classification of the World Bank, the countries were categorised to developed and developing countries. We also used a dynamic common correlated effects estimator. The results consistently show that biomass energy as well as fossil fuel consumption generate more CO 2 emissions. A closer look at the results show that a 100% increase in biomass consumption (tonnes per capita) will increase CO 2 emissions (metric tons per capita) within the range of 2 to 47%. An increase of biomass energy intensity (biomass consumption in tonnes divided by real gross domestic product) of 100% will increase CO 2 emissions (metric tons per capita) within the range of 4 to 47%. An increase of fossil fuel consumption (tonnes of oil equivalent per capita) by 100% will increase CO 2 emissions (metric tons per capita) within the range of 35 to 55%. The results further show that real GDP urbanisation and population increase CO 2 emissions. However, hydroelectricity and institutional quality decrease CO 2 emissions. It is further observed that financial development, foreign direct investment and openness decrease CO 2 emissions in the developed countries, but the opposite results are found for the developing nations. The results also show that the Kyoto Protocol reduces emission and that Environmental Kuznets Curve exists. Among the policy implications of the foregoing results is the necessity of substituting fossil fuels with other types of renewable energy (such as hydropower) rather than biomass energy for reduction of emission to be achieved.
Energy harvesting and battery power based routing in wireless sensor networks
Wireless sensor networks (WSNs) are a collection of several small and inexpensive battery-powered nodes, commonly used to monitor regions of interests and to collect data from the environment. Several issues exist in routing data packets through WSN, but the most crucial problem is energy. There are a number of routing approaches in WSNs that address the issue of energy by the use of different energy-efficient methods. This paper, presents a brief summary of routing and related issues in WSNs. The most recent energy-efficient data routing approaches are reviewed and categorized based on their aims and methodologies. The traditional battery based energy sources for sensor nodes and the conventional energy harvesting mechanisms that are widely used to in energy replenishment in WSN are reviewed. Then a new emerging energy harvesting technology that uses piezoelectric nanogenerators to supply power to nanosensor; the type of sensors that cannot be charged by conventional energy harvesters are explained. The energy consumption reduction routing strategies in WSN are also discussed. Furthermore, comparisons of the variety of energy harvesting mechanisms and battery power routing protocols that have been discussed are presented, eliciting their advantages, disadvantages and their specific feature. Finally, a highlight of the challenges and future works in this research domain is presented.