Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Pseudochromis fuscus"
Sort by:
Ocean Acidification Affects Prey Detection by a Predatory Reef Fish
Changes in olfactory-mediated behaviour caused by elevated CO(2) levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2) will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2) and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO(2) levels or one of two elevated CO(2) levels (∼600 µatm or ∼950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2) and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2) treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2) treatment and feeding activity was lower for fish in the mid CO(2) treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2) treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2) acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.
Sit and survive: predation avoidance by cryptobenthic coral reef fishes
Predation is a crucial ecosystem function, transferring nutrients and shaping the abundance and diversity of animals within communities. On coral reefs, fish-fish predation (i.e., piscivory) is arguably one of the best known ecosystem functions, yet is also one of the least well quantified. Recent work has suggested that the prey capture performance of piscivorous fishes may differ when feeding on actively swimming vs. cryptobenthic fish prey. However, the extent of this difference remains unquantified. Our goal, therefore, was to conduct performance-based experiments comparing piscivorous fishes feeding on two different fish prey types, namely, actively swimming vs. cryptobenthic prey (i.e., prey sitting on the benthos). While predators were able to immediately detect actively swimming prey, when feeding on cryptobenthic prey, predators were generally unable to detect the prey until it moved. Both focal predators, the grabber Pseudochromis fuscus and the engulfer Pterois volitans were less successful at capturing cryptobenthic prey (mean 28% probability of capture), compared to actively swimming prey (85%). Overall, our study demonstrates the heterogeneous nature of fish predation on coral reefs, and the challenges of feeding on different prey functional groups.
Elevated CO2 Affects Predator-Prey Interactions through Altered Performance
Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.
Sensory cues of a top-predator indirectly control a reef fish mesopredator
Behavioural trophic cascades highlight the importance of indirect/risk effects in the maintenance of healthy trophic-level links in complex ecosystems. However, there is limited understanding on how the loss of indirect top–down control can cascade through the food-web to modify lower level predator–prey interactions. Using a reef fish food-web, our study examines behavioural interactions among predators to assess how fear elicited by top-predator cues (visual and chemical stimuli) can alter mesopredator behaviour and modify their interaction with resource prey. Under experimental conditions, the presence of any cue (visual, chemical, or both) from the top-predator (coral trout Plectropomus leopardus) strongly restricted the distance swum, area explored and foraging activity of the mesopredator (dottyback Pseudochromis fuscus), while indirectly triggering a behavioural release of the resource prey (recruits of the damselfish Pomacentrus chrysurus). Interestingly, the presence of a large non-predator species (thicklip wrasse Hemigymnus melapterus) also mediated the impact of the mesopredator on prey, as it provoked mesopredators to engage in an ‘inspection’ behaviour, while significantly reducing their feeding activity. Our study describes for the first time a three-level behavioural cascade of coral reef fish and stresses the importance of indirect interactions in marine food-webs.
Multiple predator effects on juvenile prey survival
Predicting multiple predator effects (MPEs) on shared prey remains one of the biggest challenges in ecology. Empirical evidence indicates that interactions among predators can alter predation rates and modify any expected linear effects on prey survival. Knowledge on predator density, identity and life-history traits is expected to help predict the behavioral mechanisms that lead to non-linear changes in predation. Yet, few studies have rigorously examined the effects of predator–predator interactions on prey survival, particularly with marine vertebrate predators. Using an additive-substitutive design, we experimentally paired reef piscivores with different hunting mode [active predator, Pseudochromis fuscus (F); ambush predators, Cephalopholis boenak (B), Epinephelus maculatus (M)] to determine how behavioral interactions modified their combined impacts on damselfish prey. Results showed that behavioral patterns among predators matched those predicted from their hunting mode. However, it was the identity of the predators what determined the strength of any positive or negative interactions, and thus the nature and magnitude of MPEs on prey survival (i.e., risk-enhancing effects: treatments BB, MM and FM; risk-reducing: BM; and linear effects: FF, FB). Given the specificity of predator–predator interactions, none of the predators were fully functionally redundant. Even when two species seemed substitutable (i.e., predators F and M), they led to vastly diverse effects when paired with additional predator species (i.e., B). We concluded that knowledge of the identity of the predator species and the behavioral interactions among them is crucial to successfully predict MPEs in natural systems.
Top predators negate the effect of mesopredators on prey physiology
Predation theory and empirical evidence suggest that top predators benefit the survival of resource prey through the suppression of mesopredators. However, whether such behavioural suppression can also affect the physiology of resource prey has yet to be examined. Using a three‐tier reef fish food web and intermittent‐flow respirometry, our study examined changes in the metabolic rate of resource prey exposed to combinations of mesopredator and top predator cues. Under experimental conditions, the mesopredator (dottyback, Pseudochromis fuscus) continuously foraged and attacked resource prey (juveniles of the damselfish Pomacentrus amboinensis) triggering an increase in prey O₂ uptake by 38 ± 12·9% (mean ± SE). The visual stimulus of a top predator (coral trout, Plectropomus leopardus) restricted the foraging activity of the mesopredator, indirectly allowing resource prey to minimize stress and maintain routine O₂ uptake. Although not as strong as the effect of the top predator, the sight of a large non‐predator species (thicklip wrasse, Hemigymnus melapterus) also reduced the impact of the mesopredator on prey metabolic rate. We conclude that lower trophic‐level species can benefit physiologically from the presence of top predators through the behavioural suppression that top predators impose on mesopredators. By minimizing the energy spent on mesopredator avoidance and the associated stress response to mesopredator attacks, prey may be able to invest more energy in foraging and growth, highlighting the importance of the indirect, non‐consumptive effects of top predators in marine food webs.
First report of interspecific cleaning in a Pseudochromid, the dusky dottyback (Pseudochromis fuscus)
[...]an analysis of facultative and obligate cleaning behaviours in marine wrasses (Labridae) suggests that these behaviours have evolved repeatedly (on ~ 26–30 occasions) and that the evolution of facultative and obligate cleaning occurs via a transition through a juvenile cleaning state (Baliga and Law 2016). Here, we report an observation of interspecific cleaning by an adult dusky dottyback (Pseudochromis fuscus) under natural conditions on the reef flat surrounding Lizard Island, Great Barrier Reef, Australia (14° 40′ 05.4″ S 145° 27′ 49.8″ E). Funding This research was funded by a Maple-Brown Family Lizard Island Postdoctoral Fellowship (WEF) and the National Geographic Society (NGS-63934R-19) (RMB and WEF).
Social Facilitation of Selective Mortality
Territorial defense by breeders influences access to resources near defended near sites by intruder species and may have indirect effects on other species within the territory, leading to local patchiness in distribution patterns. The present study demonstrates that adult males of a damselfish, Pomacentrus amboinensis, indirectly facilitate the increased survival of conspecific juveniles through the territorial defense of their nesting site from potential egg predators. Moreover, male territoriality results in a shift in the selectivity of predation on newly settled juveniles. We monitored the fate of pairs of predator-naïve, newly settled P. amboinensis placed inside and outside nesting territories. Individuals within a pair differed in size by ∼1 mm and were tagged for individual identification. Away from male territories larger juveniles had greater survival, while within territories, larger juveniles suffered higher mortality. Behavioral observations indicated that the moonwrasse Thalassoma lunare, a predator of benthic eggs and small fishes, had reduced access to juveniles within male territories, while another predator on small fishes, the dottyback Pseudochromis fuscus, had unobstructed access to male territories. Experimental removal of P. fuscus indicated that the shift in the direction of phenotypic selection on newly settled juveniles was the indirect effect of aggression by nest-guarding male damselfish, which resulted in differential access to male territories by these two predators of small fishes. Evidence suggests that behavioral interactions between the resident community and intruders will influence patchiness in selective pressures imposed on benthic prey by influencing both the composition of predator types that can access the prey resource and their relative abundance. How this spatial and temporal patchiness in predator pressure interacts with spatial patchiness of recruiting prey will have a major influence on the resulting distribution of juveniles and their phenotypic traits.
Degraded Environments Alter Prey Risk Assessment
Elevated water temperatures, a decrease in ocean pH, and an increasing prevalence of severe storms have lead to bleaching and death of the hard corals that underpin coral reef ecosystems. As coral cover declines, fish diversity and abundance declines. How degradation of coral reefs affects behavior of reef inhabitants is unknown. Here, we demonstrate that risk assessment behaviors of prey are severely affected by coral degradation. Juvenile damselfish were exposed to visual and olfactory indicators of predation risk in healthy live, thermally bleached, and dead coral in a series of laboratory and field experiments. While fish still responded to visual cues in all habitats, they did not respond to olfactory indicators of risk in dead coral habitats, likely as a result of alteration or degradation of chemical cues. These cues are critical for learning and avoiding predators, and a failure to respond can have dramatic repercussions for survival and recruitment. Elevated water temperatures, a decrease in ocean pH, and an increasing prevalence of severe storms have lead to bleaching and death of the hard corals that underpin coral reef ecosystems. As coral cover declines, fish diversity and abundance declines. How degradation of coral reefs affects behavior of reef inhabitants is unknown. Here, we demonstrate that risk assessment behaviors of prey are severely affected by coral degradation.
Phylogeography of colour polymorphism in the coral reef fish Pseudochromis fuscus, from Papua New Guinea and the Great Barrier Reef
Body colour has played a significant role in the evolution of coral reef fishes, but the phylogenetic level at which colour variation is expressed and the evolutionary processes driving the development and persistence of different colour patterns are often poorly understood. The aim of this study was to examine the genetic relationships between multiple colour morphs of Pseudochromis fuscus (family Pseudochromidae), both within and among geographic locations. Pseudochromis fuscus is currently described as a single species, but exhibits at least six discrete colour morphs throughout its range. In this study, P. fuscus from Papua New Guinea (PNG) and the Great Barrier Reef (GBR), Australia, formed three genetically distinct clades based on mitochondrial DNA (control region) sequence data: (1) yellow and brown morphs from the GBR and southern PNG, as well as an orange morph from southern PNG; (2) a pink morph from southern PNG; and (3) all three morphs (pink, orange and grey) found in Kimbe Bay, northern PNG. The three groups showed deep levels of divergence (d=14.6-25.4%), suggesting that P. fuscus is a complex of polychromatic species, rather than a single widespread species with many different colour morphs. Population genetic analyses indicate that the three clades have experienced unique evolutionary histories, possibly from differential effects of sea level fluctuations, barriers to gene flow and historical biogeography.[PUBLICATION ABSTRACT]