Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
12,319 result(s) for "Psychobiology"
Sort by:
Mental Fatigue and Sport-Specific Psychomotor Performance: A Systematic Review
Background Mental fatigue (MF) is a psychobiological state that impairs endurance performance in healthy athletes. Recently, multiple studies indicated that MF could also impair sport-specific psychomotor performance (SSPP). Nevertheless, a systematic overview detailing the effects of MF on SSPP is currently lacking. Objective The objective of this study is to collate relevant literature and examine the effect of MF on SSPP. A secondary aim was to create an overview of the potential subjective and physiological factors underlying this MF effect. Methods PubMed (MEDLINE), Web of Science, PsycINFO and SPORTDiscus were searched (5th of November 2020). Studies were eligible when study outcomes encompassed any form of SSPP skill in a sport-specific context, the intervention was targeted to induce MF, and the population included healthy individuals. The presence of a manipulation check, to indicate the successful induction of MF, was obligatory for inclusion. Secondary outcomes were all outcomes (either physiological or psychological) that could explain the underlying mechanisms of the effect of MF on SSPP. Results In total, 21 papers were included. MF was successfully induced in all but two studies, which were excluded from further analysis. MF negatively impacts a myriad of SSPP outcomes, including decision-making, reaction time and accuracy outcomes. No changes in physiological outcomes, that could underlie the effect of MF, were reported. Subjectively, only ratings of perceived of exertion increased due to MF in some studies. Conclusions Overall, the selected papers indicated that MF negatively affects SSPP. Research that assesses brain function, while evaluating the effect of MF on SSPP is essential to create further insight.
Mental Fatigue Impairs Endurance Performance: A Physiological Explanation
Mental fatigue reflects a change in psychobiological state, caused by prolonged periods of demanding cognitive activity. It has been well documented that mental fatigue impairs cognitive performance; however, more recently, it has been demonstrated that endurance performance is also impaired by mental fatigue. The mechanism behind the detrimental effect of mental fatigue on endurance performance is poorly understood. Variables traditionally believed to limit endurance performance, such as heart rate, lactate accumulation and neuromuscular function, are unaffected by mental fatigue. Rather, it has been suggested that the negative impact of mental fatigue on endurance performance is primarily mediated by the greater perception of effort experienced by mentally fatigued participants. Pageaux et al. (Eur J Appl Physiol 114(5):1095–1105, 2014 ) first proposed that prolonged performance of a demanding cognitive task increases cerebral adenosine accumulation and that this accumulation may lead to the higher perception of effort experienced during subsequent endurance performance. This theoretical review looks at evidence to support and extend this hypothesis.
The Effects of Mental Fatigue on Physical Performance: A Systematic Review
Background Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity. It has recently been suggested that mental fatigue can affect physical performance. Objective Our objective was to evaluate the literature on impairment of physical performance due to mental fatigue and to create an overview of the potential factors underlying this effect. Methods Two electronic databases, PubMed and Web of Science (until 28 April 2016), were searched for studies designed to test whether mental fatigue influenced performance of a physical task or influenced physiological and/or perceptual responses during the physical task. Studies using short (<30 min) self-regulatory depletion tasks were excluded from the review. Results A total of 11 articles were included, of which six were of strong and five of moderate quality. The general finding was a decline in endurance performance (decreased time to exhaustion and self-selected power output/velocity or increased completion time) associated with a higher than normal perceived exertion. Physiological variables traditionally associated with endurance performance (heart rate, blood lactate, oxygen uptake, cardiac output, maximal aerobic capacity) were unaffected by mental fatigue. Maximal strength, power, and anaerobic work were not affected by mental fatigue. Conclusion The duration and intensity of the physical task appear to be important factors in the decrease in physical performance due to mental fatigue. The most important factor responsible for the negative impact of mental fatigue on endurance performance is a higher perceived exertion.
How to Tackle Mental Fatigue: A Systematic Review of Potential Countermeasures and Their Underlying Mechanisms
Introduction Mental fatigue (MF) is a psychobiological state that impairs cognitive as well as physical performance in different settings. Recently, numerous studies have sought ways to counteract these negative effects of MF. An overview of the explored countermeasures for MF is, however, lacking. Objectives The objective of this review is to provide an overview of the different MF countermeasures currently explored in literature. Countermeasures were classified by the timing of application (before, during or after the moment of MF) and type of intervention (behavioural, physiological and psychological). Methods The databases of PubMed (MEDLINE), Web of Science and PsycINFO were searched until March 7, 2022. Studies were eligible when MF was induced using a task with a duration of at least 30 min, when they assessed MF markers in at least two out of the three areas wherein MF markers have been defined (i.e., behavioural, subjective and/or [neuro]physiological) and used a placebo or control group for the countermeasure. Results A total of 33 studies investigated one or more countermeasures against MF. Of these, eight studies assessed a behavioural countermeasure, 22 a physiological one, one a psychological countermeasure and two a combination of a behavioural and psychological countermeasure. The general finding was that a vast majority of the countermeasures induced a positive effect on behavioural (e.g., task or sport performance) and/or subjective MF markers (e.g., visual analogue scale for MF or alertness). No definitive conclusion could be drawn regarding the effect of the employed countermeasures on (neuro)physiological markers of MF as only 19 of the included studies investigated these measures, and within these a large heterogeneity in the evaluated (neuro)physiological markers was present. Discussion Within the physiological countermeasures it seems that the use of odours during a MF task or caffeine before the MF task are the most promising interventions in combating MF. Promising behavioural (e.g., listening to music) and psychological (e.g., extrinsic motivation) countermeasures of MF have also been reported. The most assumed mechanism through which these countermeasures operate is the dopaminergic system. However, this mechanism remains speculative as (neuro)physiological markers of MF have been scarcely evaluated to date. Conclusion The present systematic review reveals that a wide range of countermeasures have been found to successfully counteract MF on a subjective, (neuro)physiological and/or behavioural level. Of these, caffeine, odours, music and extrinsic motivation are the most evidenced for countering MF. To provide in-detail practical guidelines for the real-life application of MF countermeasures, more research must be performed into the underlying mechanisms and into the optimal dosage and time of application/intake.