Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
391
result(s) for
"Pteropus"
Sort by:
Nipah virus dynamics in bats and implications for spillover to humans
by
Olival, Kevin J.
,
Fielder, Mark D.
,
Anthony, Simon J.
in
Animals
,
Asia
,
Bangladesh - epidemiology
2020
Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia—one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to batpopulation turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysiaclade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus’s range.
Journal Article
Henipavirus RNA in African Bats
by
Gloza-Rausch, Florian
,
Adu-Sarkodie, Yaw
,
Corman, Victor Max
in
Animals
,
Bats
,
Bats (Animals)
2009
Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruit-eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat.
Feces from E. helvum roosting in an urban setting in Kumasi/Ghana were tested for Henipavirus RNA. Sequences of three novel viruses in phylogenetic relationship to known Henipaviruses were detected. Virus RNA concentrations in feces were low.
The finding of novel putative Henipaviruses outside Australia and Asia contributes a significant extension of the region of potential endemicity of one of the most pathogenic virus genera known in humans.
Journal Article
Routes of Hendra Virus Excretion in Naturally-Infected Flying-Foxes: Implications for Viral Transmission and Spillover Risk
2015
Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.
Journal Article
Flying-Fox Roost Disturbance and Hendra Virus Spillover Risk
2015
Bats of the genus Pteropus (flying-foxes) are the natural host of Hendra virus (HeV) which periodically causes fatal disease in horses and humans in Australia. The increased urban presence of flying-foxes often provokes negative community sentiments because of reduced social amenity and concerns of HeV exposure risk, and has resulted in calls for the dispersal of urban flying-fox roosts. However, it has been hypothesised that disturbance of urban roosts may result in a stress-mediated increase in HeV infection in flying-foxes, and an increased spillover risk. We sought to examine the impact of roost modification and dispersal on HeV infection dynamics and cortisol concentration dynamics in flying-foxes. The data were analysed in generalised linear mixed models using restricted maximum likelihood (REML). The difference in mean HeV prevalence in samples collected before (4.9%), during (4.7%) and after (3.4%) roost disturbance was small and non-significant (P = 0.440). Similarly, the difference in mean urine specific gravity-corrected urinary cortisol concentrations was small and non-significant (before = 22.71 ng/mL, during = 27.17, after = 18.39) (P= 0.550). We did find an underlying association between cortisol concentration and season, and cortisol concentration and region, suggesting that other (plausibly biological or environmental) variables play a role in cortisol concentration dynamics. The effect of roost disturbance on cortisol concentration approached statistical significance for region, suggesting that the relationship is not fixed, and plausibly reflecting the nature and timing of disturbance. We also found a small positive statistical association between HeV excretion status and urinary cortisol concentration. Finally, we found that the level of flying-fox distress associated with roost disturbance reflected the nature and timing of the activity, highlighting the need for a ‘best practice’ approach to dispersal or roost modification activities. The findings usefully inform public discussion and policy development in relation to Hendra virus and flying-fox management.
Journal Article
Unmasking the complexity of species identification in Australasian flying-foxes
by
Frankham, Greta J.
,
Neaves, Linda E.
,
Danks, Melissa
in
Aviation
,
Bats
,
Biology and Life Sciences
2018
Pteropus (flying-foxes) are a speciose group of non-echolocating large bats, with five extant Australian species and 24 additional species distributed amongst the Pacific Islands. In 2015, an injured flying-fox with unusual facial markings was found in Sydney, Australia, following severe and widespread storms. Based on an initial assessment, the individual belonged to Pteropus but could not be readily identified to species. As a consequence, four hypotheses for its identification/origin were posited: the specimen represented (1) an undescribed Australian species; or (2) a morphological variant of a recognised Australian species; or (3) a hybrid individual; or (4) a vagrant from the nearby Southwest Pacific Islands. We used a combination of morphological and both mitochondrial- and nuclear DNA-based identification methods to assess these hypotheses. Based on the results, we propose that this morphologically unique Pteropus most likely represents an unusual P. alecto (black flying-fox) potentially resulting from introgression from another Pteropus species. Unexpectedly, this individual, and the addition of reference sequence data from newly vouchered specimens, revealed a previously unreported P. alecto mitochondrial DNA lineage. This lineage was distinct from currently available haplotypes. It also suggests long-term hybridisation commonly occurs between P. alecto and P. conspicillatus (spectacled flying-fox). This highlights the importance of extensive reference data, and the inclusion of multiple vouchered specimens for each species to encompass both intraspecific and interspecific variation to provide accurate and robust species identification. Moreover, our additional reference data further demonstrates the complexity of Pteropus species relationships, including hybridisation, and potential intraspecific biogeographical structure that may impact on their management and conservation.
Journal Article
Climate change and the effects of temperature extremes on Australian flying-foxes
2008
Little is known about the effects of temperature extremes on natural systems. This is of increasing concern now that climate models predict dramatic increases in the intensity, duration and frequency of such extremes. Here we examine the effects of temperature extremes on behaviour and demography of vulnerable wild flying-foxes (Pteropus spp.). On 12 January 2002 in New South Wales, Australia, temperatures exceeding 42°C killed over 3500 individuals in nine mixed-species colonies. In one colony, we recorded a predictable sequence of thermoregulatory behaviours (wing-fanning, shade-seeking, panting and saliva-spreading, respectively) and witnessed how 5-6% of bats died from hyperthermia. Mortality was greater among the tropical black flying-fox, Pteropus alecto (10-13%) than the temperate grey-headed flying-fox, Pteropus poliocephalus (less than 1%), and young and adult females were more affected than adult males (young, 23-49%; females, 10-15%; males, less than 3%). Since 1994, over 30 000 flying-foxes (including at least 24 500 P. poliocephalus) were killed during 19 similar events. Although P. alecto was relatively less affected, it is currently expanding its range into the more variable temperature envelope of P. poliocephalus, which increases the likelihood of die-offs occurring in this species. Temperature extremes are important additional threats to Australian flying-foxes and the ecosystem services they provide, and we recommend close monitoring of colonies where temperatures exceeding 42.0°C are predicted. The effects of temperature extremes on flying-foxes highlight the complex implications of climate change for behaviour, demography and species survival.
Journal Article
Haematology and Plasma Biochemistry of Wild Black Flying-Foxes, (Pteropus alecto) in Queensland, Australia
2015
This paper establishes reference ranges for hematologic and plasma biochemistry values in wild Black flying-foxes (Pteropus alecto) captured in South East Queensland, Australia. Values were found to be consistent with those of other Pteropus species. Four hundred and forty-seven animals were sampled over 12 months and significant differences were found between age, sex, reproductive and body condition cohorts in the sample population. Mean values for each cohort fell within the determined normal adult reference range, with the exception of elevated levels of alkaline phosphatase in juvenile animals. Hematologic and biochemistry parameters of injured animals showed little or no deviation from the normal reference values for minor injuries, while two animals with more severe injury or abscessation showed leucocytosis, anaemia, thrombocytosis, hyperglobulinemia and hypoalbuminemia.
Journal Article
Long-Distance and Frequent Movements of the Flying-Fox Pteropus poliocephalus: Implications for Management
by
Catterall, Carla P.
,
Roberts, Billie J.
,
Eby, Peggy
in
Animal behavior
,
Animal Migration - physiology
,
Animals
2012
Flying-foxes (Pteropodidae) are large bats capable of long-distance flight. Many species are threatened; some are considered pests. Effective conservation and management of flying-foxes are constrained by lack of knowledge of their ecology, especially of movement patterns over large spatial scales. Using satellite telemetry, we quantified long-distance movements of the grey-headed flying-fox Pteropus poliocephalus among roost sites in eastern Australia. Fourteen adult males were tracked for 2-40 weeks (mean 25 weeks). Collectively, these individuals utilised 77 roost sites in an area spanning 1,075 km by 128 km. Movement patterns varied greatly between individuals, with some travelling long distances. Five individuals travelled cumulative distances >1,000 km over the study period. Five individuals showed net displacements >300 km during one month, including one movement of 500 km within 48 hours. Seasonal movements were consistent with facultative latitudinal migration in part of the population. Flying-foxes shifted roost sites frequently: 64% of roost visits lasted <5 consecutive days, although some individuals remained at one roost for several months. Modal 2-day distances between consecutive roosts were 21-50 km (mean 45 km, range 3-166 km). Of 13 individuals tracked for >12 weeks, 10 moved >100 km in one or more weeks. Median cumulative displacement distances over 1, 10 and 30 weeks were 0 km, 260 km and 821 km, respectively. On average, over increasing time-periods, one additional roost site was visited for each additional 100 km travelled. These findings explain why culling and relocation attempts have had limited success in resolving human-bat conflicts in Australia. Flying-foxes are highly mobile between camps and regularly travel long distances. Consequently, local control actions are likely to have only temporary effects on local flying-fox populations. Developing alternative methods to manage these conflicts remains an important challenge that should be informed by a better understanding of the species' movement patterns.
Journal Article
Hendra Virus Infection Dynamics in Australian Fruit Bats
2011
Hendra virus is a recently emerged zoonotic agent in Australia. Since first described in 1994, the virus has spilled from its wildlife reservoir (pteropid fruit bats, or 'flying foxes') on multiple occasions causing equine and human fatalities. We undertook a three-year longitudinal study to detect virus in the urine of free-living flying foxes (a putative route of excretion) to investigate Hendra virus infection dynamics. Pooled urine samples collected off plastic sheets placed beneath roosting flying foxes were screened for Hendra virus genome by quantitative RT-PCR, using a set of primers and probe derived from the matrix protein gene. A total of 1672 pooled urine samples from 67 sampling events was collected and tested between 1 July 2008 and 30 June 2011, with 25% of sampling events and 2.5% of urine samples yielding detections. The proportion of positive samples was statistically associated with year and location. The findings indicate that Hendra virus excretion occurs periodically rather than continuously, and in geographically disparate flying fox populations in the state of Queensland. The lack of any detection in the Northern Territory suggests prevalence may vary across the range of flying foxes in Australia. Finally, our findings suggest that flying foxes can excrete virus at any time of year, and that the apparent seasonal clustering of Hendra virus incidents in horses and associated humans (70% have occurred June to October) reflects factors other than the presence of virus. Identification of these factors will strengthen risk minimization strategies for horses and ultimately humans.
Journal Article
Homosexual Fellatio: Erect Penis Licking between Male Bonin Flying Foxes Pteropus pselaphon
2016
A recent focus of interest has been on the functional significance of genital licking (fellatio and cunnilingus) in relation to sexual selection in Pteropodid bats. In the present paper, a form of fellatio in wild Bonin flying foxes, Pteropus pselaphon, performed between adult males has been reported. During the mating season, adult flying foxes roost in same-sex groups, forming ball-shaped clusters which provide warmth. The female clusters may also contain a few males. Unassociated with allogrooming, same-sex genital licking occurred among males in the all male clusters. As such, male-male fellatio can be considered as homosexual behavior, two functional explanations could account for this behavior; the social bonding and the social tension regulation hypotheses suggested in a previous review. Given that neither the simpler alternative that in all male groups such fellatio may represent misdirected sexual behavior, nor the two previously proposed functional hypotheses were supported by the data, I propose another functional hypothesis. Homosexual fellatio in this species could help males solve inconsistent situations in the roost when there are conflicts between cooperative behavior for social thermoregulation and competition for mating.
Journal Article