Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
216 result(s) for "Puberty, Precocious - genetics"
Sort by:
Clinical and Genetic Characterization of Familial Central Precocious Puberty
Abstract Context Central precocious puberty (CPP) can have a familial form in approximately one-quarter of the children. The recognition of this inherited condition increased after the identification of autosomal dominant CPP with paternal transmission caused by mutations in the MKRN3 and DLK1 genes. Objective We aimed to characterize the inheritance and estimate the prevalence of familial CPP in a large multiethnic cohort; to compare clinical and hormonal features, as well as treatment response to GnRH analogs (GnRHa), in children with distinct modes of transmission; and to investigate the genetic basis of familial CPP. Methods We retrospectively studied 586 children with a diagnosis of CPP. Patients with familial CPP (n = 276) were selected for clinical and genetic analysis. Data from previous studies were grouped, encompassing sequencing of MKRN3 and DLK1 genes in 204 patients. Large-scale parallel sequencing was performed in 48 individuals from 34 families. Results The prevalence of familial CPP was estimated at 22%, with a similar frequency of maternal and paternal transmission. Pedigree analyses of families with maternal transmission suggested an autosomal dominant inheritance. Clinical and hormonal features, as well as treatment response to GnRHa, were similar among patients with different forms of transmission of familial CPP. MKRN3 loss-of-function mutations were the most prevalent cause of familial CPP, followed by DLK1 loss-of-function mutations, affecting, respectively, 22% and 4% of the studied families; both affected exclusively families with paternal transmission. Rare variants of uncertain significance were identified in CPP families with maternal transmission. Conclusion We demonstrated a similar prevalence of familial CPP with maternal and paternal transmission. MKRN3 and DLK1 loss-of-function mutations were the major causes of familial CPP with paternal transmission.
MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons
The identification of loss-of-function mutations in MKRN3 in patients with central precocious puberty in association with the decrease in MKRN3 expression in the medial basal hypothalamus of mice before the initiation of reproductive maturation suggests that MKRN3 is acting as a brake on gonadotropin-releasing hormone (GnRH) secretion during childhood. In the current study, we investigated the mechanism by which MKRN3 prevents premature manifestation of the pubertal process. We showed that, as in mice, MKRN3 expression is high in the hypothalamus of rats and nonhuman primates early in life, decreases as puberty approaches, and is independent of sex steroid hormones. We demonstrated that Mkrn3 is expressed in Kiss1 neurons of the mouse hypothalamic arcuate nucleus and that MKRN3 repressed promoter activity of human KISS1 and TAC3, 2 key stimulators of GnRH secretion. We further showed that MKRN3 has ubiquitinase activity, that this activity is reduced by MKRN3 mutations affecting the RING finger domain, and that these mutations compromised the ability of MKRN3 to repress KISS1 and TAC3 promoter activity. These results indicate that MKRN3 acts to prevent puberty initiation, at least in part, by repressing KISS1 and TAC3 transcription and that this action may involve an MKRN3-directed ubiquitination-mediated mechanism.
Novel Genetic and Biochemical Findings of DLK1 in Children with Central Precocious Puberty: A Brazilian–Spanish Study
Central precocious puberty (CPP) has been associated with loss-of-function mutations in 2 paternally expressed genes (MKRN3 and DLK1). Rare defects in the DLk1 were also associated with poor metabolic phenotype at adulthood. Our aim was to investigate genetic and biochemical aspects of DLK1 in a Spanish cohort of children with CPP without MKRN3 mutations. A large cohort of children with idiopathic CPP (Spanish PUBERE Registry) was studied. Genomic deoxyribonucleic acid was obtained from 444 individuals (168 index cases) with CPP and their close relatives. Automatic sequencing of MKRN3 and DLK1 genes were performed. Five rare heterozygous mutations of MKRN3 were initially excluded in girls with familial CPP. A rare allelic deletion (c.401_404 + 8del) in the splice site junction of DLK1 was identified in a Spanish girl with sporadic CPP. Pubertal signs started at 5.7 years. Her metabolic profile was normal. Familial segregation analysis showed that the DLK1 deletion was de novo in the affected child. Serum DLK1 levels were undetectable (<0.4 ng/mL), indicating that the deletion led to complete lack of DLK1 production. Three others rare allelic variants of DLK1 were also identified (p.Asn134=; g.-222 C>A and g.-223 G>A) in 2 girls with CPP. However, both had normal DLK1 serum levels. Loss-of-function mutations of DLK1 represent a rare cause of CPP, reinforcing a significant role of this factor in human pubertal timing.
Genotype–Phenotype Correlations in Central Precocious Puberty Caused by MKRN3 Mutations
Abstract Context Loss-of-function mutations of makorin RING finger protein 3 (MKRN3) are the most common monogenic cause of familial central precocious puberty (CPP). Objective To describe the clinical and hormonal features of a large cohort of patients with CPP due to MKRN3 mutations and compare the characteristics of different types of genetic defects. Methods Multiethnic cohort of 716 patients with familial or idiopathic CPP screened for MKRN3 mutations using Sanger sequencing. A group of 156 Brazilian girls with idiopathic CPP (ICPP) was used as control group. Results Seventy-one patients (45 girls and 26 boys from 36 families) had 18 different loss-of-function MKRN3 mutations. Eight mutations were classified as severe (70% of patients). Among the 71 patients, first pubertal signs occurred at 6.2 ± 1.2 years in girls and 7.1 ± 1.5 years in boys. Girls with MKRN3 mutations had a shorter delay between puberty onset and first evaluation and higher follicle-stimulating hormone levels than ICPP. Patients with severe MKRN3 mutations had a greater bone age advancement than patients with missense mutations (2.3 ± 1.6 vs 1.6 ± 1.4 years, P = .048), and had higher basal luteinizing hormone levels (2.2 ± 1.8 vs 1.1 ± 1.1 UI/L, P = .018) at the time of presentation. Computational protein modeling revealed that 60% of the missense mutations were predicted to cause protein destabilization. Conclusion Inherited premature activation of the reproductive axis caused by loss-of-function mutations of MKRN3 is clinically indistinct from ICPP. However, the type of genetic defect may affect bone age maturation and gonadotropin levels.
Paternally Inherited DLK1 Deletion Associated With Familial Central Precocious Puberty
Context:Central precocious puberty (CPP) results from premature activation of the hypothalamic–pituitary–gonadal axis. Few genetic causes of CPP have been identified, with the most common being mutations in the paternally expressed imprinted gene MKRN3.Objective:To identify the genetic etiology of CPP in a large multigenerational family.Design:Linkage analysis followed by whole-genome sequencing was performed in a family with five female members with nonsyndromic CPP. Detailed phenotyping was performed at the time of initial diagnosis and long-term follow-up, and circulating levels of Delta-like 1 homolog (DLK1) were measured in affected individuals. Expression of DLK1 was measured in mouse hypothalamus and in kisspeptin-secreting neuronal cell lines in vitro.Setting:Endocrine clinic of an academic medical center.Patients:Patients with familial CPP were studied.Results:A complex defect of DLK1 (∼14-kb deletion and 269-bp duplication) was identified in this family. This deletion included the 5′ untranslated region and the first exon of DLK1, including the translational start site. Only family members who inherited the defect from their father have precocious puberty, consistent with the known imprinting of DLK1. The patients did not demonstrate additional features of the imprinted disorder Temple syndrome except for increased fat mass. Serum DLK1 levels were undetectable in all affected individuals. Dlk1 was expressed in mouse hypothalamus and in kisspeptin neuron-derived cell lines.Conclusion:We identified a genomic defect in DLK1 associated with isolated familial CPP. MKRN3 and DLK1 are both paternally expressed imprinted genes. These findings suggest a role of genomic imprinting in regulating the timing of human puberty.Through a combination of linkage analysis and whole genome-sequencing, a mutation in the paternally expressed imprinted gene DLK1 in a family with central precocious puberty is identified.
DLK1 Is a Novel Link Between Reproduction and Metabolism
Delta-like homolog 1 (DLK1), also called preadipocyte factor 1, prevents adipocyte differentiation and has been considered a molecular gatekeeper of adipogenesis. A DLK1 complex genomic defect was identified in five women from a single family with central precocious puberty (CPP) and increased body fat percentage. We studied 60 female patients with a diagnosis of CPP or history of precocious menarche. Thirty-one of them reported a family history of precocious puberty. DLK1 DNA sequencing was performed in all patients. Serum DLK1 concentrations were measured using an ELISA assay in selected cases. Metabolic and reproductive profiles of adult women with CPP caused by DLK1 defects were compared with those of 20 women with idiopathic CPP. We identified three frameshift mutations of DLK1 (p.Gly199Alafs*11, p.Val271Cysfs*14, and p.Pro160Leufs*50) in five women from three families with CPP. Segregation analysis was consistent with the maternal imprinting of DLK1. Serum DLK1 concentrations were undetectable in three affected women. Metabolic abnormalities, such as overweight/obesity, early-onset glucose intolerance/type 2 diabetes mellitus, and hyperlipidemia, were more prevalent in women with the DLK1 mutation than in the idiopathic CPP group. Notably, the human metabolic alterations were similar to the previously described dlk1-null mice phenotype. Two sisters who carried the p.Gly199Alafs*11 mutation also exhibited polycystic ovary syndrome and infertility. Loss-of-function mutations of DLK1 are a definitive cause of familial CPP. The high prevalence of metabolic alterations in adult women who experienced CPP due to DLK1 defects suggests that this antiadipogenic factor represents a link between reproduction and metabolism.
Understanding the genetic complexity of puberty timing across the allele frequency spectrum
Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483 , which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83 , which amplified the signaling of MC3R , a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease. A multi-ancestry genome-wide association study for age at menarche followed by fine mapping and downstream analysis implicates 665 pubertal timing genes, such as the G-protein-coupled receptor 83 ( GPR83 ) and other genes expressed in the ovaries involved in the DNA damage response.
Association of Polymorphisms in the Kisspeptin/GPR54 Pathway Genes With Risk of Early Puberty in Chinese Girls
This case control study was designed to investigate the association between mutation of 10 single nucleotide polymorphism (SNP) loci (rs1132506, rs5780218, rs192636495, rs4889, rs184749, rs12985070, rs708910, rs932491, rs8074995, and rs2306877) in all 5 genes (KISS1, GPR54, PLCB1, PRKCA, and ITPR1) in the kisspeptin/GPR54 pathway and the risk of early puberty in Chinese Han girls. A total of 314 pairs of early puberty girls on their first visit to hospital and age-matched controls (± 3 months) were recruited. The genotypes of each SNP were determined and the effect of loci variation on early puberty was investigated. rs5780218 was significantly associated with early puberty in additive, dominant, and recessive models of inheritance after adjusting for confounding factors (Pr < .05). After stratification, rs5780218 variation (odds ratio [OR], 1.650, 95% confidence interval [CI], 1.155-2.355 in additive models and OR, 2.116; 95% CI, 1.187-3.770 in recessive models) increased the risk of central precocious puberty (CPP); mutation in rs708910 (OR, 2.768; 95% CI, 1.305-5.872 in recessive model) had a positive association with the risk of CPP; and rs932491 variation was negatively associated with early and fast puberty (EFP) (OR, 0.309; 95% CI, 0.144-0.661 in additive models and OR, 0.317; 95% CI, 0.141-0.713 in dominant models). Our study suggests that mutation in rs5780218 and rs708910 increases the risk of CPP. rs932491 variation may have a protective effect on the risk of EFP. Further studies in larger populations or with people from different regions are needed to verify our findings.
Central Precocious Puberty Caused by Mutations in the Imprinted Gene MKRN3
Little is known about genetic control of the timing of puberty. This study implicates an imprinted gene, MKRN3, in familial central precocious puberty. The data suggest that the encoded protein inhibits puberty. The onset of puberty is first detected as an increase in the amplitude and frequency of pulses of gonadotropin-releasing hormone (GnRH) after a quiescent period during childhood. The reemergence of pulsatile GnRH secretion leads to increases in the secretion of the gonadotropins, luteinizing hormone and follicle-stimulating hormone (FSH), by the pituitary gland and the consequent activation of gonadal function. 1 Early activation of the hypothalamic–pituitary–gonadal axis results in gonadotropin-dependent precocious puberty, also known as central precocious puberty, which is clinically defined by the development of secondary sexual characteristics before the age of 8 years in girls and 9 years in boys. . . .