Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,095
result(s) for
"Pyrin protein"
Sort by:
Structural basis for the oligomerization-mediated regulation of NLRP3 inflammasome activation
by
Zhang, Zhikuan
,
Hirama, Chie
,
Shimizu, Toshiyuki
in
Alzheimer's disease
,
Animals
,
Arteriosclerosis
2022
The nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) responds to a vast variety of stimuli, and activated NLRP3 forms an inflammasome, which in turn is associated with conditions such as atherosclerosis, Alzheimer’s disease, and diabetes. A multilayered regulatory mechanism ensures proper NLRP3 inflammasome activation, although the structural basis for this process remains unclear. This study aimed to investigate the cryo-electron microscopy structure of the dodecameric form of full-length NLRP3 bound to the clinically relevant NLRP3-specific inhibitor MCC950. The inhibitor binds to the cavity distinct from the nucleotide binding site in the NACHT domain and stabilizes the closed conformation of NLRP3. The barrel-shaped dodecamer composed of the inactive form of NLRP3 is formed mainly through LRR–LRR interactions on the lateral side, and the highly positively charged top and bottom sides composed of NACHT domains provide a scaffold for membrane association. The cryo-electron microscopy structure suggests that oligomerization of NLRP3 is necessary for its membrane association; it is subsequently disrupted for activation, hence serving as a key player in controlling the spatiotemporal NLRP3 inflammasome activation. These findings are expected to contribute to the development of drugs targeting NLRP3 in future.
Journal Article
A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti–PD-1 immunotherapy
2020
An in-depth understanding of immune escape mechanisms in cancer is likely to lead to innovative advances in immunotherapeutic strategies. However, much remains unknown regarding these mechanisms and how they impact immunotherapy resistance. Using several preclinical tumor models as well as clinical specimens, we identified a mechanism whereby CD8+ T cell activation in response to programmed cell death 1 (PD-1) blockade induced a programmed death ligand 1/NOD-, LRR-, and pyrin domain-containing protein 3 (PD-L1/NLRP3) inflammasome signaling cascade that ultimately led to the recruitment of granulocytic myeloid-derived suppressor cells (PMN-MDSCs) into tumor tissues, thereby dampening the resulting antitumor immune response. The genetic and pharmacologic inhibition of NLRP3 suppressed PMN-MDSC tumor infiltration and significantly augmented the efficacy of anti-PD-1 antibody immunotherapy. This pathway therefore represents a tumor-intrinsic mechanism of adaptive resistance to anti-PD-1 checkpoint inhibitor immunotherapy and is a promising target for future translational research.
Journal Article
The NLRP3 inflammasome: molecular activation and regulation to therapeutics
2019
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical bases of NLRP3 activation and regulation and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.The NLRP3 inflammasome mediates pro-inflammatory responses and pyroptotic cell death. Here, the authors describe the complex pathways controlling its activation and regulation and how it is being targeted to treat inflammatory diseases.
Journal Article
An update on the regulatory mechanisms of NLRP3 inflammasome activation
2021
The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex involved in the release of mature interleukin-1β and triggering of pyroptosis, which is of paramount importance in a variety of physiological and pathological conditions. Over the past decade, considerable advances have been made in elucidating the molecular mechanisms underlying the priming/licensing (Signal 1) and assembly (Signal 2) involved in NLRP3 inflammasome activation. Recently, a number of studies have indicated that the priming/licensing step is regulated by complicated mechanisms at both the transcriptional and posttranslational levels. In this review, we discuss the current understanding of the mechanistic details of NLRP3 inflammasome activation with a particular emphasis on protein-protein interactions, posttranslational modifications, and spatiotemporal regulation of the NLRP3 inflammasome machinery. We also present a detailed summary of multiple positive and/or negative regulatory pathways providing upstream signals that culminate in NLRP3 inflammasome complex assembly. A better understanding of the molecular mechanisms underlying NLRP3 inflammasome activation will provide opportunities for the development of methods for the prevention and treatment of NLRP3 inflammasome-related diseases.
Journal Article
Cryo-EM structures of the active NLRP3 inflammasome disc
Inflammasomes are cytosolic innate immune complexes that activate caspase-1 following detection of pathogenic and endogenous dangers
1
–
5
, and NACHT-, leucine-rich repeat (LRR)- and pyrin domain (PYD)-containing protein 3 (NLRP3) is an inflammasome sensor of membrane damage highly important in regard to the induction of inflammation
2
,
6
,
7
. Here we report cryogenic electron microscopy structures of disc-shaped active NLRP3 oligomers in complex with adenosine 5′-O-(3-thio)triphosphate, the centrosomal NIMA-related kinase 7 (NEK7) and the adaptor protein ASC, which recruits caspase-1. In these NLRP3–NEK7–ASC complexes, the central NACHT domain of NLRP3 assumes an ATP-bound conformation in which two of its subdomains rotate by about 85° relative to the ADP-bound inactive conformation
8
–
12
. The fish-specific NACHT-associated domain conserved in NLRP3 but absent in most NLRPs
13
becomes ordered in its key regions to stabilize the active NACHT conformation and mediate most interactions in the disc. Mutations on these interactions compromise NLRP3-mediated caspase-1 activation. The N-terminal PYDs from all NLRP3 subunits combine to form a PYD filament that recruits ASC PYD to elicit downstream signalling. Surprisingly, the C-terminal LRR domain and the LRR-bound NEK7 do not participate in disc interfaces. Together with previous structures of an inactive NLRP3 cage in which LRR–LRR interactions play an important role
8
–
11
, we propose that the role of NEK7 is to break the inactive cage to transform NLRP3 into the active NLRP3 inflammasome disc.
We report cryogenic electron microscopy structures of disc-shaped active NLRP3 oligomers in complex with NEK7 and ASC, and propose that the role of NEK7 is to transform NLRP3 into the active NLRP3 inflammasome disc.
Journal Article
NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway
2018
NLRP3 is a cytosolic sensor triggered by different pathogen- and self-derived signals that plays a central role in a variety of pathological conditions, including sterile inflammation. The leucine-rich repeat domain is present in several innate immune receptors, where it is frequently responsible for sensing danger signals and regulation of activation. Here we show by reconstitution of truncated and chimeric variants into
Nlrp3
−
/
−
macrophages that the leucine-rich repeat domain is dispensable for activation and self-regulation of NLRP3 by several different triggers. The pyrin domain on the other hand is required to maintain NLRP3 in the inactive conformation. A fully responsive minimal NLRP3 truncation variant reconstitutes peritonitis in
Nlrp3
−
/
−
mice. We demonstrate that in contrast to pathogen-activated NLRC4, the constitutively active NLRP3 molecule cannot engage wild-type NLRP3 molecules in a self-catalytic oligomerization. This lack of signal amplification is likely a protective mechanism to decrease sensitivity to endogenous triggers to impede autoinflammation.
Activation of the NLRP3 inflammasome is associated with various diseases but its activation mechanism is not fully understood. Here, the authors determine the impact of different NLRP3 domains on sensing NLRP3 triggers, inflammasome assembly and regulation of NLRP3 inflammasome activation.
Journal Article
RRx-001 ameliorates inflammatory diseases by acting as a potent covalent NLRP3 inhibitor
2021
The NLRP3 inflammasome plays a crucial role in innate immune-mediated inflammation and contributes to the pathogenesis of multiple autoinflammatory, metabolic and neurodegenerative diseases, but medications targeting the NLRP3 inflammasome are not available for clinical use. RRx-001 is a well-tolerated anticancer agent currently being investigated in phase III clinical trials, but its effects on inflammatory diseases are not known. Here, we show that RRx-001 is a highly selective and potent NLRP3 inhibitor that has strong beneficial effects on NLRP3-driven inflammatory diseases. RRx-001 inhibits the activation of the canonical, noncanonical, and alternative NLRP3 inflammasomes but not the AIM2, NLRC4 or Pyrin inflammasomes. Mechanistically, RRx-001 covalently binds to cysteine 409 of NLRP3 via its bromoacetyl group and therefore blocks the NLRP3-NEK7 interaction, which is critical for the assembly and activation of the NLRP3 inflammasome. More importantly, RRx-001 treatment attenuates the symptoms of lipopolysaccharide (LPS)-induced systemic inflammation, dextran sulfate sodium (DSS)-induced colitis and experimental autoimmune encephalomyelitis (EAE) in mice. Thus, our study identifies RRx-001 as a new potential therapeutic agent for NLRP3-driven diseases.
Journal Article
MCC950 closes the active conformation of NLRP3 to an inactive state
by
Arostegui, Juan I.
,
Martínez-Banaclocha, Helios
,
Pérez-Sánchez, Horacio
in
631/154/556
,
631/250
,
631/92/609
2019
NLRP3 (NOD-like receptor pyrin domain-containing protein 3) is an innate immune sensor that contributes to the development of different diseases, including monogenic autoinflammatory syndromes, gout, atherosclerosis, and Alzheimer’s disease. The molecule sulfonylurea MCC950 is a NLRP3 inflammasome inhibitor with potential clinical utility. However, the mechanism of action of MCC950 remains unknown. Here, we characterize the mechanism of action of MCC950 in both wild-type and autoinflammatory-related NLRP3 mutants, and demonstrate that MCC950 closes the ‘open’ conformation of active NLRP3.
MCC950, a small-molecule inhibitor of the NLRP3 inflammasome, inactivates NLRP3, including hyperactive disease-linked mutations, by closing the ‘open’ conformation, thereby preventing conformational changes required for NLRP3 activation.
Journal Article
Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome
2019
The NLRP3 inflammasome can be activated by stimuli that include nigericin, uric acid crystals, amyloid-β fibrils and extracellular ATP. The mitotic kinase NEK7 licenses the assembly and activation of the NLRP3 inflammasome in interphase. Here we report a cryo-electron microscopy structure of inactive human NLRP3 in complex with NEK7, at a resolution of
3
.8 Å. The earring-shaped NLRP3 consists of curved leucine-rich-repeat and globular NACHT domains, and the C-terminal lobe of NEK7 nestles against both NLRP3 domains. Structural recognition between NLRP3 and NEK7 is confirmed by mutagenesis both in vitro and in cells. Modelling of an active NLRP3–NEK7 conformation based on the NLRC4 inflammasome predicts an additional contact between an NLRP3-bound NEK7 and a neighbouring NLRP3. Mutations to this interface abolish the ability of NEK7 or NLRP3 to rescue NLRP3 activation in NEK7-knockout or NLRP3-knockout cells. These data suggest that NEK7 bridges adjacent NLRP3 subunits with bipartite interactions to mediate the activation of the NLRP3 inflammasome.
A cryo-electron microscopy structure of human NLRP3 in complex with the mitotic kinase NEK7 provides insights into the interactions that mediate the activation of the NLRP3 inflammasome.
Journal Article
The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease
by
Stefanoni, Davide
,
D’Alessandro, Angelo
,
Marchetti, Carlo
in
Administration, Oral
,
Alzheimer Disease - complications
,
Alzheimer Disease - drug therapy
2020
Numerous studies demonstrate that neuroinflammation is a key player in the progression of Alzheimer’s disease (AD). Interleukin (IL)-1β is a main inducer of inflammation and therefore a prime target for therapeutic options. The inactive IL-1β precursor requires processing by the the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome into a mature and active form. Studies have shown that IL-1β is up-regulated in brains of patients with AD, and that genetic inactivation of the NLRP3 inflammasome improves behavioral tests and synaptic plasticity phenotypes in a murine model of the disease. In the present study, we analyzed the effect of pharmacological inhibition of the NLRP3 inflammasome using dapansutrile (OLT1177), an oral NLRP3-specific inhibitor that is safe in humans. Six-month-old WT and APP/PS1 mice were fed with standard mouse chow or OLT1177-enriched chow for 3 mo. The Morris water maze test revealed an impaired learning and memory ability of 9-mo-old APP/PS1 mice (P = 0.001), which was completely rescued by OLT1177 fed to mice (P = 0.008 to untreated APP/PS1). Furthermore, our findings revealed that 3 mo of OLT1177 diet can rescue synaptic plasticity in this mouse model of AD (P = 0.007 to untreated APP/PS1). In addition, microglia were less activated (P = 0.07) and the number of plaques was reduced in the cortex (P = 0.03) following NLRP3 inhibition with OLT1177 administration. We also observed an OLT1177 dose-dependent normalization of plasma metabolic markers of AD to those of WT mice. This study suggests the therapeutic potential of treating neuroinflammation with an oral inhibitor of the NLRP3 inflammasome.
Journal Article