Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
43
result(s) for
"Pyruvaldehyde - adverse effects"
Sort by:
Inflammatory Mediators Are Induced by Dietary Glycotoxins, a Major Risk Factor for Diabetic Angiopathy
by
Vlassara, Helen
,
Oberstein, Robert
,
Cai, Weijing
in
administration & dosage
,
adverse effects
,
analogs & derivatives
2002
Diet is a major environmental source of proinflammatory AGEs (heat-generated advanced glycation end products); its impact in humans remains unclear. We explored the effects of two equivalent diets, one regular (high AGE, H-AGE) and the other with 5-fold lower AGE (L-AGE) content on inflammatory mediators of 24 diabetic subjects: 11 in a 2-week crossover and 13 in a 6-week study. After 2 weeks on H-AGE, serum AGEs increased by 64.5% (P = 0.02) and on L-AGE decreased by 30% (P = 0.02). The mononuclear cell tumor necrosis factor-α/β-actin mRNA ratio was 1.4 ± 0.5 on H-AGE and 0.9 ± 0.5 on L-AGE (P = 0.05), whereas serum vascular adhesion molecule-1 was 1,108 ± 429 and 698 ± 347 ng/ml (P = 0.01) on L- and H-AGE, respectively. After 6 weeks, peripheral blood mononuclear cell tumor necrosis factor-α rose by 86.3% (P = 0.006) and declined by 20% (P, not significant) on H- or L-AGE diet, respectively; C-reactive protein increased by 35% on H-AGE and decreased by 20% on L-AGE (P = 0.014), and vascular adhesion molecule-1 declined by 20% on L-AGE (P < 0.01) and increased by 4% on H-AGE. Serum AGEs were increased by 28.2% on H-AGE (P = 0.06) and reduced by 40% on L-AGE (P = 0.02), whereas AGE low density lipoprotein was increased by 32% on H-AGE and reduced by 33% on L-AGE diet (P < 0.05). Thus in diabetes, environmental (dietary) AGEs promote inflammatory mediators, leading to tissue injury. Restriction of dietary AGEs suppresses these effects.
Journal Article
Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans
by
Swamy, Shobha
,
Uribarri, Jaime
,
Woodward, Mark
in
ADAM Proteins - genetics
,
ADAM Proteins - metabolism
,
ADAM10 Protein
2014
Age-associated dementia and Alzheimer's disease (AD) are currently epidemic. Neither their cause nor connection to the metabolic syndrome (MS) is clear. Suppression of deacetylase survival factor sirtuin 1 (SIRT1), a key host defense, is a central feature of AD. Age-related MS and diabetes are also causally associated with suppressed SIRT1 partly due to oxidant glycotoxins [advanced glycation end products (AGEs)]. Changes in the modern diet include excessive nutrient-bound AGEs, such as neurotoxic methyl-glyoxal derivatives (MG). To determine whether dietary AGEs promote AD, we evaluated WT mice pair-fed three diets throughout life: low-AGE (MG-), MG-supplemented low-AGE (MG+), and regular (Reg) chow. Older MG+-fed mice, similar to old Reg controls, developed MS, increased brain amyloid-β42, deposits of AGEs, gliosis, and cognitive deficits, accompanied by suppressed SIRT1, nicotinamide phosphoribosyltransferase, AGE receptor 1, and PPARγ. These changes were not due to aging or caloric intake, as neither these changes nor the MS were present in age-matched, pair-fed MGmice. The mouse data were enhanced by significant temporal correlations between high circulating AGEs and impaired cognition, as well as insulin sensitivity in older humans, in whom dietary and serum MG levels strongly and inversely associated with SIRT1 gene expression. The data identify a specific AGE (MG) as a modifiable risk factor for AD and MS, possibly acting via suppressed SIRT1 and other host defenses, to promote chronic oxidant stress and inflammation. Because SIRT1 deficiency in humans is both preventable and reversible by AGE reduction, a therapeutic strategy that includes AGE reduction may offer a new strategy to combat the epidemics of AD and MS.
Journal Article
Resveratrol Protects Mouse Oocytes from Methylglyoxal-Induced Oxidative Damage
2013
Methylglyoxal, a reactive dicarbonyl compound, is mainly formed from glycolysis. Methylglyoxal can lead to the dysfunction of mitochondria, the depletion of cellular anti-oxidation enzymes and the formation of advanced glycation ends. Previous studies showed that the accumulation of methylglyoxal and advanced glycation ends can impair the oocyte maturation and reduce the oocyte quality in aged and diabetic females. In this study, we showed that resveratrol, a kind of phytoalexin found in the skin of grapes, red wine and other botanical extracts, can alleviate the adverse effects caused by methylglyoxal, such as inhibition of oocyte maturation and disruption of spindle assembly. Besides, methylglyoxal-treated oocytes displayed more DNA double strands breaks and this can also be decreased by treatment of resveratrol. Further investigation of these processes revealed that methylglyoxal may affect the oocyte quality by resulting in excessive reactive oxygen species production, aberrant mitochondrial distribution and high level lipid peroxidation, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can protect the oocytes from methylglyoxal-induced cytotoxicity and this was mainly through the correction of the abnormity of cellular reactive oxygen species metabolism.
Journal Article
Methylglyoxal-Mediated Dopamine Depletion, Working Memory Deficit, and Depression-Like Behavior Are Prevented by a Dopamine/Noradrenaline Reuptake Inhibitor
by
Selhorst, Ingrid
,
de Paula, Gabriela Cristina
,
Dafre, Alcir Luiz
in
Aging
,
Alzheimer's disease
,
Animals
2021
Methylglyoxal (MGO) is an endogenous toxin, mainly produced as a by-product of glycolysis that has been associated to aging, Alzheimer’s disease, and inflammation. Cell culture studies reported that MGO could impair the glyoxalase, thioredoxin, and glutathione systems. Thus, we investigated the effect of in vivo MGO administration on these systems, but no major changes were observed in the glyoxalase, thioredoxin, and glutathione systems, as evaluated in the prefrontal cortex and the hippocampus of mice. A previous study from our group indicated that MGO administration produced learning/memory deficits and depression-like behavior. Confirming these findings, the tail suspension test indicated that MGO treatment for 7 days leads to depression-like behavior in three different mice strains. MGO treatment for 12 days induced working memory impairment, as evaluated in the Y maze spontaneous alternation test, which was paralleled by low dopamine and serotonin levels in the cerebral cortex. Increased DARPP32 Thr75/Thr34 phosphorylation ratio was observed, suggesting a suppression of phosphatase 1 inhibition, which may be involved in behavioral responses to MGO. Co-treatment with a dopamine/noradrenaline reuptake inhibitor (bupropion, 10 mg/kg, p.o.) reversed the depression-like behavior and working memory impairment and restored the serotonin and dopamine levels in the cerebral cortex. Overall, the cerebral cortex monoaminergic system appears to be a preferential target of MGO toxicity, a new potential therapeutic target that remains to be addressed.
Journal Article
Methylglyoxal Evokes Pain by Stimulating TRPA1
by
Gentry, Clive
,
Andersson, David A.
,
Fleming, Thomas
in
Acetanilides - pharmacology
,
Acute Pain - chemically induced
,
Acute Pain - genetics
2013
Diabetic neuropathy is a severe complication of long-standing diabetes and one of the major etiologies of neuropathic pain. Diabetes is associated with an increased formation of reactive oxygen species and the electrophilic dicarbonyl compound methylglyoxal (MG). Here we show that MG stimulates heterologously expressed TRPA1 in CHO cells and natively expressed TRPA1 in MDCK cells and DRG neurons. MG evokes [Ca(2+)]i-responses in TRPA1 expressing DRG neurons but is without effect in neurons cultured from Trpa1(-/-) mice. Consistent with a direct, intracellular action, we show that methylglyoxal is significantly more potent as a TRPA1 agonist when applied to the intracellular face of excised membrane patches than to intact cells. Local intraplantar administration of MG evokes a pain response in Trpa1(+/+) but not in Trpa1(-/-) mice. Furthermore, persistently increased MG levels achieved by two weeks pharmacological inhibition of glyoxalase-1 (GLO-1), the rate-limiting enzyme responsible for detoxification of MG, evokes a progressive and marked thermal (cold and heat) and mechanical hypersensitivity in wildtype but not in Trpa1(-/-) mice. Our results thus demonstrate that TRPA1 is required both for the acute pain response evoked by topical MG and for the long-lasting pronociceptive effects associated with elevated MG in vivo. In contrast to our observations in DRG neurons, MG evokes indistinguishable [Ca(2+)]i-responses in pancreatic β-cells cultured from Trpa1(+/+) and Trpa1(-/-) mice. In vivo, the TRPA1 antagonist HC030031 impairs glucose clearance in the glucose tolerance test both in Trpa1(+/+) and Trpa1(-/-) mice, indicating a non-TRPA1 mediated effect and suggesting that results obtained with this compound should be interpreted with caution. Our results show that TRPA1 is the principal target for MG in sensory neurons but not in pancreatic β-cells and that activation of TRPA1 by MG produces a painful neuropathy with the behavioral hallmarks of diabetic neuropathy.
Journal Article
Propyl Gallate Attenuates Methylglyoxal-Induced Alzheimer-like Cognitive Deficits and Neuroinflammation in Mice
by
Liao, Han-Wei
,
Chen, Yu-Hsiang
,
Tsai, Hui-Yun
in
Alzheimer Disease - chemically induced
,
Alzheimer Disease - drug therapy
,
Alzheimer Disease - metabolism
2026
Methylglyoxal (MG), a reactive dicarbonyl metabolite associated with diabetes and metabolic disorders, contributes to carbonyl stress, neuroinflammation, and Alzheimer-like neurodegeneration. This study investigated the neuroprotective effects of propyl gallate (PG), a phenolic antioxidant widely used as a food additive, against MG-induced cognitive impairment in mice. Male C57BL/6J mice were exposed to 1% MG in drinking water for eight weeks and orally administered PG (20, 40, or 100 mg/kg/d). Behavioral tests demonstrated that PG significantly improved spatial learning and recognition memory and alleviated anxiety-like behavior induced by MG. Histological and biochemical analyses revealed that PG reduced hippocampal neuronal damage, suppressed tau hyperphosphorylation and amyloid-β (Aβ) accumulation, and attenuated the overexpression of pro-inflammatory cytokines TNF-α and IL-6. Furthermore, PG increased PI3K expression and Akt phosphorylation while reducing activation of GSK-3β, counteracting the MG-induced suppression of this pathway and aligning with reduced tau hyperphosphorylation. These findings indicate that PG protects against MG-related cognitive dysfunction through modulation of neuroinflammatory responses and survival-related signaling pathways, highlighting its potential as a neuroprotective dietary antioxidant for metabolic stress-associated neurodegenerative disorders.
Journal Article
The SGLT2 Inhibitor Empagliflozin Mitigates the Harmful Effects of Methylglyoxal Exposure on Ovalbumin-Induced Mouse Airway Inflammation
2025
Asthma is a chronic inflammatory airway disease that can be aggravated by metabolic comorbidities such as type 2 diabetes mellitus (DM2) and obesity. Elevated levels of methylglyoxal (MGO), a reactive glycolysis byproduct, have been associated with exacerbation of allergic airway disease. SGLT2 inhibitors have been successfully employed in DM2 treatment. Here, we hypothesized that elimination of MGO might be a potential anti-inflammatory mechanism of SGLT2 inhibitors. This study aimed to evaluate the effects of empagliflozin on ovalbumin (OVA)-induced airway inflammation in mice chronically exposed to MGO. Male C57BL/6 mice sensitized with OVA were exposed to 0.5% MGO for 12 weeks and treated with empagliflozin (10 mg/kg, gavage, two weeks). MGO exposure significantly enhanced airway eosinophil infiltration, mucus production and collagen deposition, as well as levels of IL-4, IL-5, eotaxin and TNF-α. Empagliflozin treatment significantly reduced OVA-induced airway disease, which was accompanied by reductions in IgE, IL-4, IL-5, eotaxin, and TNF-α levels. Empagliflozin significantly reduced the MGO levels in serum, and immunohistochemical staining, and protein expression of MGO-hydroimidazolone (MG-H1), while increasing IL-10 levels and glyoxylase-1 (GLO 1) activity in lungs. In conclusion, empagliflozin efficiently removes MGO from circulation, while increasing the MGO detoxification by GLO 1, thereby mitigating the OVA-induced inflammation in MGO-exposed mice.
Journal Article
Cyanidin Attenuates Methylglyoxal-Induced Oxidative Stress and Apoptosis in INS-1 Pancreatic β-Cells by Increasing Glyoxalase-1 Activity
by
Suantawee, Tanyawan
,
Cheng, Henrique
,
Adisakwattana, Sirichai
in
Animals
,
Anthocyanins - pharmacology
,
Apoptosis
2020
Recently, the mechanisms responsible for anti-glycation activity of cyanidin and its derivatives on the inhibition of methylglyoxal (MG)-induced protein glycation and advanced glycation-end products (AGEs) as well as oxidative DNA damage were reported. In this study, we investigated the protective effect of cyanidin against MG-induced oxidative stress and apoptosis in rat INS-1 pancreatic β-cells. Exposure of cells to cytotoxic levels of MG (500 µM) for 12 h caused a significant reduction in cell viability. However, the pretreatment of cells with cyanidin alone (6.25–100 μM) for 12 h, or cotreatment of cells with cyanidin (3.13–100 μM) and MG, protected against cell cytotoxicity. In the cotreatment condition, cyanidin (33.3 and 100 μM) also decreased MG-induced apoptosis as determined by caspase-3 activity. Furthermore, INS-1 cells treated with MG increased the generation of reactive oxygen species (ROS) during a 6 h exposure. The MG-induced increase in ROS production was inhibited by cyanidin (33.3 and 100 μM) after 3 h stimulation. Furthermore, MG diminished the activity of glyoxalase 1 (Glo-1) and its gene expression as well as the level of total glutathione. In contrast, cyanidin reversed the inhibitory effect of MG on Glo-1 activity and glutathione levels. Interestingly, cyanidin alone was capable of increasing Glo-1 activity and glutathione levels without affecting Glo-1 mRNA expression. These findings suggest that cyanidin exerts a protective effect against MG-induced oxidative stress and apoptosis in pancreatic β-cells by increasing the activity of Glo-1.
Journal Article
Methylglyoxal Induces Systemic Symptoms of Irritable Bowel Syndrome
2014
Patients with irritable bowel syndrome (IBS) show a wide range of symptoms including diarrhea, abdominal pain, changes in bowel habits, nausea, vomiting, headache, anxiety, depression and cognitive impairment. Methylglyoxal has been proved to be a potential toxic metabolite produced by intestinal bacteria. The present study was aimed at investigating the correlation between methylglyoxal and irritable bowel syndrome. Rats were treated with an enema infusion of methylglyoxal. Fecal water content, visceral sensitivity, behavioral tests and serum 5-hydroxytryptamine (5-HT) were assessed after methylglyoxal exposure. Our data showed that fecal water content was significantly higher than controls after methylglyoxal exposure except that of 30 mM group. Threshold volumes on balloon distension decreased in the treatment groups. All exposed rats showed obvious head scratching and grooming behavior and a decrease in sucrose preference. The serum 5-HT values were increased in 30, 60, 90 mM groups and decreased in 150 mM group. Our findings suggested that methylglyoxal could induce diarrhea, visceral hypersensitivity, headache as well as depression-like behaviors in rats, and might be the key role in triggering systemic symptoms of IBS.
Journal Article