Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
29,136 result(s) for "Quantitative Trait Loci"
Sort by:
Genetic studies of body mass index yield new insights for obesity biology
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci ( P  < 5 × 10 −8 ), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis. A genome-wide association study and Metabochip meta-analysis of body mass index (BMI) detects 97 BMI-associated loci, of which 56 were novel, and many loci have effects on other metabolic phenotypes; pathway analyses implicate the central nervous system in obesity susceptibility and new pathways such as those related to synaptic function, energy metabolism, lipid biology and adipogenesis. Genetic correlates of obesity In the second of two Articles in this issue from the GIANT Consortium, Elizabeth Speliotes and collegues conducted a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), commonly used to define obesity and assess adiposity, to find 97 BMI-associated loci, of which 56 were novel. Many of these loci have significant effects on other metabolic phenotypes. The 97 loci account for about 2.7% of BMI variation, and genome-wide estimates suggest common variation accounts for more than 20% of BMI variation. Pathway analyses implicate the central nervous system in obesity susceptibility including synaptic function, glutamate signaling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression
Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis - and trans -expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis -eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans -eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans -eQTL. Trans -eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes. Analyses of expression profiles from whole blood of 31,684 individuals identify cis -expression quantitative trait loci (eQTL) effects for 88% of genes and trans -eQTL effects for 37% of trait-associated variants.
Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data
Dental caries and periodontitis account for a vast burden of morbidity and healthcare spending, yet their genetic basis remains largely uncharacterized. Here, we identify self-reported dental disease proxies which have similar underlying genetic contributions to clinical disease measures and then combine these in a genome-wide association study meta-analysis, identifying 47 novel and conditionally-independent risk loci for dental caries. We show that the heritability of dental caries is enriched for conserved genomic regions and partially overlapping with a range of complex traits including smoking, education, personality traits and metabolic measures. Using cardio-metabolic traits as an example in Mendelian randomization analysis, we estimate causal relationships and provide evidence suggesting that the processes contributing to dental caries may have undesirable downstream effects on health. Dental caries and periodontitis are among the most common medical conditions. Here, the authors report a GWAS for measures of oral health that reveals 47 risk loci for caries, find genetic correlation with 31 other complex traits and use Mendelian randomization analyses to explore potential causal relationships.
New genetic loci link adipose and insulin biology to body fat distribution
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures ( P  < 5 × 10 −8 ). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms. Genome-wide association meta-analyses of waist-to-hip ratio adjusted for body mass index in more than 224,000 individuals identify 49 loci, 33 of which are new and many showing significant sexual dimorphism with a stronger effect in women; pathway analyses implicate adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution. Cardiometabolic traits linked to body fat distribution In the first of a pair of Articles in this issue from the GIANT Consortium, genome-wide association meta-analyses of waist and hip circumference-related traits in more than 200,000 individuals have been used to identify 49 loci — 33 of them new — associated with waist-to-hip ratio adjusted for body mass index and an additional 19 loci associated with related waist and hip circumference measures. A subset of these loci shows significant sexual dimorphism, with many showing a stronger effect in women. Analyses implicate adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms and offer potential targets for interventions in the risks associated with abdominal fat accumulation.
The genetic basis of parental care evolution in monogamous mice
Parental care is essential for the survival of mammals, yet the mechanisms underlying its evolution remain largely unknown. Here we show that two sister species of mice, Peromyscus polionotus and Peromyscus maniculatus , have large and heritable differences in parental behaviour. Using quantitative genetics, we identify 12 genomic regions that affect parental care, 8 of which have sex-specific effects, suggesting that parental care can evolve independently in males and females. Furthermore, some regions affect parental care broadly, whereas others affect specific behaviours, such as nest building. Of the genes linked to differences in nest-building behaviour, vasopressin is differentially expressed in the hypothalamus of the two species, with increased levels associated with less nest building. Using pharmacology in Peromyscus and chemogenetics in Mus , we show that vasopressin inhibits nest building but not other parental behaviours. Together, our results indicate that variation in an ancient neuropeptide contributes to interspecific differences in parental care. Parental care in mice evolves through multiple genetic changes; one candidate is vasopressin, the reduced expression of which promotes parental nest-building behaviour in monogamous mice. Genetics of parental care Rodents display a wide range of parental care behaviours, such as nest building, with some species more driven to perform these duties than others. However, the genetic and evolutionary mechanisms that influence the extent to which parental care behaviours are performed have remained unknown. Here, Hopi Hoekstra and colleagues utilize a quantitative genetic approach to identify genetic candidates that influence parental care in closely related mouse species. Genetic changes that enhance the levels of the hypothalamic hormone vasopressin were linked to less nest building. In addition, artificial manipulation of neurons releasing vasopressin could directly affect the extent of nest building, with lower vasopressin-releasing neuronal activity correlated with increased levels of nest building. This suggests that variation in neuropeptide signalling may contribute to complex social behaviours such as parental care.
Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors
In vertebrates, including humans, individuals harbor gut microbial communities whose species composition and relative proportions of dominant microbial groups are tremendously varied. Although external and stochastic factors clearly contribute to the individuality of the microbiota, the fundamental principles dictating how environmental factors and host genetic factors combine to shape this complex ecosystem are largely unknown and require systematic study. Here we examined factors that affect microbiota composition in a large (n = 645) mouse advanced intercross line originating from a cross between C57BL/6J and an ICR-derived outbred line (HR). Quantitative pyrosequencing of the microbiota defined a core measurable microbiota (CMM) of 64 conserved taxonomic groups that varied quantitatively across most animals in the population. Although some of this variation can be explained by litter and cohort effects, individual host genotype had a measurable contribution. Testing of the CMM abundances for cosegregation with 530 fully informative SNP markers identified 18 host quantitative trait loci (QTL) that show significant or suggestive genomewide linkage with relative abundances of specific microbial taxa. These QTL affect microbiota composition in three ways; some loci control individual microbial species, some control groups of related taxa, and some have putative pleiotropic effects on groups of distantly related organisms. These data provide clear evidence for the importance of host genetic control in shaping individual microbiome diversity in mammals, a key step toward understanding the factors that govern the assemblages of gut microbiota associated with complex diseases.
Genome-wide dissection of the maize ear genetic architecture using multiple populations
Improvement of grain yield is an essential long-term goal of maize (Zea mays) breeding to meet continual and increasing food demands worldwide, but the genetic basis remains unclear. We used 10 different recombination inbred line (RIL) populations genotyped with high-density markers and phenotyped in multiple environments to dissect the genetic architecture of maize ear traits. Three methods were used to map the quantitative trait loci (QTLs) affecting ear traits. We found 17–34 minor- or moderate-effect loci that influence ear traits, with little epistasis and environmental interactions, totally accounting for 55.4–82% of the phenotypic variation. Four novel QTLs were validated and fine mapped using candidate gene association analysis, expression QTL analysis and heterogeneous inbred family validation. The combination of multiple different populations is a flexible and manageable way to collaboratively integrate widely available genetic resources, thereby boosting the statistical power of QTL discovery for important traits in agricultural crops, ultimately facilitating breeding programs.
Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat
Crop yields must increase to address food insecurity. Grain weight, determined by grain length and width, is an important yield component, but our understanding of the underlying genes and mechanisms is limited. We used genetic mapping and near isogenic lines (NILs) to identify, validate and fine-map a major quantitative trait locus (QTL) on wheat chromosome 5A associated with grain weight. Detailed phenotypic characterisation of developing and mature grains from the NILs was performed. We identified a stable and robust QTL associated with a 6.9% increase in grain weight. The positive interval leads to 4.0% longer grains, with differences first visible 12 d after fertilization. This grain length effect was fine-mapped to a 4.3 cM interval. The locus also has a pleiotropic effect on grain width (1.5%) during late grain development that determines the relative magnitude of the grain weight increase. Positive NILs have increased maternal pericarp cell length, an effect which is independent of absolute grain length. These results provide direct genetic evidence that pericarp cell length affects final grain size and weight in polyploid wheat. We propose that combining genes that control distinct biological mechanisms, such as cell expansion and proliferation, will enhance crop yields.
eQTLs play critical roles in regulating gene expression and identifying key regulators in rice
Summary The regulation of gene expression plays an essential role in both the phenotype and adaptation of plants. Transcriptome sequencing enables simultaneous identification of exonic variants and quantification of gene expression. Here, we sequenced the leaf transcriptomes of 287 rice accessions from around the world and obtained a total of 177 853 high‐quality single nucleotide polymorphisms after filtering. Genome‐wide association study identified 44 354 expression quantitative trait loci (eQTLs), which regulate the expression of 13 201 genes, as well as 17 local eQTL hotspots and 96 distant eQTL hotspots. Furthermore, a transcriptome‐wide association study screened 21 candidate genes for starch content in the flag leaves at the heading stage. HS002 was identified as a significant distant eQTL hotspot with five downstream genes enriched for diterpene antitoxin synthesis. Co‐expression analysis, eQTL analysis, and linkage mapping together demonstrated that bHLH026 acts as a key regulator to activate the expression of downstream genes. The transgenic assay revealed that bHLH026 is an important regulator of diterpenoid antitoxin synthesis and enhances the disease resistance of rice. These findings improve our knowledge of the regulatory mechanisms of gene expression variation and complex regulatory networks of the rice genome and will facilitate genetic improvement of cultivated rice varieties.
Druggable genome-wide Mendelian randomization integrating GWAS and eQTL/pQTL data identifies targets for lung squamous cell carcinoma
Lung squamous cell carcinoma (LUSC) is one of the most common types of non-small cell lung cancer with poor prognosis. Druggable genome-wide Mendelian randomization (MR) was conducted to discover LUSC-related targets using expression quantitative trait loci (eQTL) and protein QTL (pQTL) in the ieu_b_4953 dataset and finngen dataset. Bayesian co-localization analysis, summary‑data‑based MR (SMR) analysis, and HEIDI test were conducted to verify the causal associations between genes and LUSC risk. Prediction of prognosis and immune infiltration was performed at the transcriptomic level, and expression patterns of genes were analyzed at the single-cell level. We identified DNMT1, ACSS2, YBX1, SELENOS, PPARA, MST1, CPA4, and MPO as LUSC-related genes based on MR analysis. Although Bayesian co-localization analysis showed negative co-localization results (PPH3 + PPH4 < 0.8), positive SMR ( p  < 0.05) and HEIDI ( p  > 0.05) were found in the ieu_b_4953 dataset and finngen dataset. Blood CPA4 and DNMT1 might be protective factors for bladder cancer and allergic rhinitis, respectively. Patients with low expression of CPA4, DNMT1 and YBX1 had better prognosis, while patients with high expression of MST1 had better prognosis. Tumor samples exhibited reduced infiltration of CD4 cells, CD8 cells, activated dendritic cells, eosinophils, myeloid-derived suppressor cells (MDSCs), macrophages, and mast cells. At the single-cell level, DNMT1, SELENOS and YBX1 were highly expressed in endothelial cells, epithelial cells, fibroblasts, hepatocytes, mast cells, and monocytes/macrophages. MST1 was overexpressed in hepatocytes. This study might deepen the understanding of the LUSC pathogenesis and identify potential targets for the management of LUSC.