Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
121,594
result(s) for
"Quantum Computing"
Sort by:
Quantum supremacy : how the quantum computer revolution will change everything
\"An exhilarating tour of humanity's next great technological achievement-quantum computing-which may eventually unravel the deepest mysteries of science and solve some of humanity's biggest problems, like global warming, world hunger, and incurable disease, by the bestselling author of The God Equation. The runaway success of the microchip processor may be reaching its end. Running up against the physical constraints of smaller and smaller sizes, traditional silicon chips are not likely to prove useful in solving humanity's greatest challenges, from climate change, to global starvation, to incurable diseases. But the quantum computer, which harnesses the power and complexity of the atomic realm, already promises to be every bit as revolutionary as the transistor and microchip once were. Its unprecedented gains in computing power herald advancements that could change every aspect of our daily lives. Automotive companies, medical researchers, and consulting firms are betting on quantum computing, hoping to exploit its power to design more efficient vehicles, create life-saving new drugs, and streamline industries to revolutionize the economy. But this is only the beginning. Quantum computers could allow us to finally create nuclear fusion reactors that create clean, renewable energy without radioactive waste or threats of meltdown. They could help us crack the biological processes that generate natural, cheap fertilizer and enable us to feed the world's growing populations. And they could unravel the fiendishly difficult protein folding that lies at the heart of previously incurable diseases like Alzheimer's, ALS, and Parkinson's, helping us to live longer, healthier lives. There is not a single problem humanity faces that couldn't be addressed by quantum computing. Told with Kaku's signature clarity and enthusiasm, Quantum Supremacy is the story of this exciting frontier and the race to claim humanity's future\"-- Provided by publisher.
Evidence for the utility of quantum computing before fault tolerance
by
Wei, Ken Xuan
,
Nayfeh, Hasan
,
van den Berg, Ewout
in
639/705/258
,
639/766/483/3926
,
639/766/483/481
2023
Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that this represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize
1
and controllably manipulate noise across such a large device. We establish the accuracy of the measured expectation values by comparing them with the output of exactly verifiable circuits. In the regime of strong entanglement, the quantum computer provides correct results for which leading classical approximations such as pure-state-based 1D (matrix product states, MPS) and 2D (isometric tensor network states, isoTNS) tensor network methods
2
,
3
break down. These experiments demonstrate a foundational tool for the realization of near-term quantum applications
4
,
5
.
Experiments on a noisy 127-qubit superconducting quantum processor report the accurate measurement of expectation values beyond the reach of current brute-force classical computation, demonstrating evidence for the utility of quantum computing before fault tolerance.
Journal Article
Universal control of a six-qubit quantum processor in silicon
by
Veldhorst, Menno
,
Volk, Christian
,
Lawrie, William I. L.
in
639/766/483/2802
,
639/925/927/481
,
Accuracy
2022
Future quantum computers capable of solving relevant problems will require a large number of qubits that can be operated reliably
1
. However, the requirements of having a large qubit count and operating with high fidelity are typically conflicting. Spins in semiconductor quantum dots show long-term promise
2
,
3
but demonstrations so far use between one and four qubits and typically optimize the fidelity of either single- or two-qubit operations, or initialization and readout
4
–
11
. Here, we increase the number of qubits and simultaneously achieve respectable fidelities for universal operation, state preparation and measurement. We design, fabricate and operate a six-qubit processor with a focus on careful Hamiltonian engineering, on a high level of abstraction to program the quantum circuits, and on efficient background calibration, all of which are essential to achieve high fidelities on this extended system. State preparation combines initialization by measurement and real-time feedback with quantum-non-demolition measurements. These advances will enable testing of increasingly meaningful quantum protocols and constitute a major stepping stone towards large-scale quantum computers.
The universal control of six qubits in a
28
Si/SiGe quantum dot array is demonstrated, achieving Rabi oscillations for each qubit with visibilities of 93.5–98.0%, implying high readout and initialization fidelities.
Journal Article
Superconducting quantum computing: a review
2020
Over the last two decades, tremendous advances have been made for constructing large-scale quantum computers. In particular, quantum computing platforms based on superconducting qubits have become the leading candidate for scalable quantum processor architecture, and the milestone of demonstrating quantum supremacy has been first achieved using 53 superconducting qubits in 2019. In this study, we provide a brief review on the experimental efforts towards the large-scale superconducting quantum computer, including qubit design, quantum control, readout techniques, and the implementations of error correction and quantum algorithms. Besides the state of the art, we finally discuss future perspectives, and which we hope will motivate further research.
Journal Article
Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits
by
Zhu, Shi-Yao
,
Xu, Kai
,
Li, Hekang
in
Data processing
,
Entangled states
,
Information processing
2019
Multipartite entangled states are crucial for numerous applications in quantum information science. However, the generation and verification of multipartite entanglement on fully controllable and scalable quantum platforms remains an outstanding challenge. We report the deterministic generation of an 18-qubit Greenberger-Horne-Zeilinger (GHZ) state and multicomponent atomic Schrödinger cat states of up to 20 qubits on a quantum processor, which features 20 superconducting qubits, also referred to as artificial atoms, interconnected by a bus resonator. By engineering a one-axis twisting Hamiltonian, the system of qubits, once initialized, coherently evolves to multicomponent atomic Schrödinger cat states—that is, superpositions of atomic coherent states including the GHZ state—at specific time intervals as expected. Our approach on a solid-state platform should not only stimulate interest in exploring the fundamental physics of quantum many-body systems, but also enable the development of applications in practical quantum metrology and quantum information processing.
Journal Article
Multi-qubit entanglement and algorithms on a neutral-atom quantum computer
2022
Gate-model quantum computers promise to solve currently intractable computational problems if they can be operated at scale with long coherence times and high-fidelity logic. Neutral-atom hyperfine qubits provide inherent scalability owing to their identical characteristics, long coherence times and ability to be trapped in dense, multidimensional arrays
1
. Combined with the strong entangling interactions provided by Rydberg states
2
–
4
, all the necessary characteristics for quantum computation are available. Here we demonstrate several quantum algorithms on a programmable gate-model neutral-atom quantum computer in an architecture based on individual addressing of single atoms with tightly focused optical beams scanned across a two-dimensional array of qubits. Preparation of entangled Greenberger–Horne–Zeilinger (GHZ) states
5
with up to six qubits, quantum phase estimation for a chemistry problem
6
and the quantum approximate optimization algorithm (QAOA)
7
for the maximum cut (MaxCut) graph problem are demonstrated. These results highlight the emergent capability of neutral-atom qubit arrays for universal, programmable quantum computation, as well as preparation of non-classical states of use for quantum-enhanced sensing.
A programmable neutral-atom quantum computer based on a two-dimensional array of qubits led to the creation of 2–6-qubit Greenberger–Horne–Zeilinger states and showed the ability to execute quantum phase estimation and optimization algorithms.
Journal Article