Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,224 result(s) for "Quantum confinement"
Sort by:
Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications
HighlightsResearch progress on inorganic perovskites quantum dots is reviewed from three aspects: physical properties, synthesis approaches, and electronic applications.Inorganic perovskite quantum dots have been exploited as either the active layers or the additives in high-performance transistors and memories.Challenges and outlook on future advancement of perovskites quantum dots-based electronics are elaborated.Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance. Among these, inorganic perovskite quantum dots (QDs) stand out for their prominent merits, such as quantum confinement effects, high photoluminescence quantum yield, and defect-tolerant structures. Additionally, ligand engineering and an all-inorganic composition lead to a robust platform for ambient-stable QD devices. This review presents the state-of-the-art research progress on inorganic perovskite QDs, emphasizing their electronic applications. In detail, the physical properties of inorganic perovskite QDs will be introduced first, followed by a discussion of synthesis methods and growth control. Afterwards, the emerging applications of inorganic perovskite QDs in electronics, including transistors and memories, will be presented. Finally, this review will provide an outlook on potential strategies for advancing inorganic perovskite QD technologies.
Synthesis of Size-Adjustable CsPbBr3 Perovskite Quantum Dots for Potential Photoelectric Catalysis Applications
As a direct band gap semiconductor, perovskite has the advantages of high carrier mobility, long charge diffusion distance, high defect tolerance and low-cost solution preparation technology. Compared with traditional metal halide perovskites, which regulate energy band and luminescence by changing halogen, perovskite quantum dots (QDs) have a surface effect and quantum confinement effect. Based on the LaMer nucleation growth theory, we have synthesized CsPbBr3 QDs with high dimensional homogeneity by creating an environment rich in Br− ions based on the general thermal injection method. Moreover, the size of the quantum dots can be adjusted by simply changing the reaction temperature and the concentration of Br− ions in the system, and the blue emission of strongly confined pure CsPbBr3 perovskite is realized. Finally, optical and electrochemical tests suggested that the synthesized quantum dots have the potential to be used in the field of photocatalysis.
Photoluminescence of carbon quantum dots: coarsely adjusted by quantum confinement effects and finely by surface trap states
Photoluminescence (PL) mechanism of carbon quantum dots (CQDs) remains controversial up to now even though a lot of approaches have been made. In order to do that, herein a PL color ladder from blue to near infrared of CQDs with the absolute quantum yields higher than 70% were prepared via a one-pot hydrothermal synthesis route and separated by silica gel column. Time-correlated single photon counting measurements suggest that the electron transition takes in effect in the PL progress of the crystalline core-shell structured CQDs, and the PL properties could be coarsely adjusted by tuning the size of the crystalline carbon core owing to quantum confinement effects, and finely adjusted by changing the surface functional groups consisted shell owing to surface trap states, respectively. Both coarse and fine adjustments of PL, as optical and photoelectrical characterizations and density-functional theory (DFT) calculations have demonstrated, make it possible for top-level design and precise synthesis of new CQDs with specific optical properties.
Twin boundary formation in Pb thin film under conditions of the quantum confinement effect
Pb growth on a clean vicinal Si(557) surface at room temperature was studied using Scanning Tunneling Microscopy. The Pb film growth occurred in accordance with the Stranski-Krastanov scenario. The anisotropic wedge-shaped Pb-islands were observed on the top of a wetting layer. DFT simulations revealed the electron energy oscillations as a function of the island thickness agrees with the electronic growth model. The out-of-plane (111) Pb island consisted of stacked 2 nm thick layers. Based on the DFT simulations and proposed one-dimensional model, it was shown that the layers were separated by the twin boundaries. The energy of formation of twin boundary between the 2 nm layers exceeded the energy gain due to the quantum confinement effect. However, the electron standing wave at the Fermi level in the 2 nm layer made the hcp position of the Pb adatom on the Pb(111) surface favorable. The seed of the twin boundary formation was realized via occupation of the hcp position by the Pb adatom and dimers of adatoms on the Pb(111) surface. The adatom separation in dimers was controlled by an indirect interaction through conductive electrons at the Fermi level of the 2 nm layer of Pb. The completion of the Pb(111) atomic layer growth was achieved by an unusual collective superdiffusive mechanism in the wetting layer and on the top of the Pb nanoisland surface. A new mechanism of twinning boundary formation based on quantum effects in a system of conducive electrons was proposed. Graphical Abstract
Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties
Uniform thickness and colloidal-stable CdS quantum disks have been reproducibly prepared using cadmium acetate, elemental sulfur, fatty acids and octadecene as the starting materials without any size/shape sorting. The thickness could be varied between 1.2 and 2.2 nm, i.e., 4.5, 5.5, 6.5 and 7.5 monolayers of CdS along the thickness direction. These single crystalline disks with lateral dimensions between 20 and 100 nm adopted the zinc blende crystal structure with 〈100〉 (possibly mixed with 〈111〉) as the thickness direction. The basal planes and side facets were terminated with cadmium carboxylates, which dictated the thicknesses to be half a monolayer more than an integer number. Formation of CdS quantum disks probably occurs through a “nucleation-growth” mechanism, instead of aggregation of pre-formed magic clusters. Completion of a full monolayer along the lateral direction was found to be rather fast if two-dimensional nucleation was initiated on existing disks, which helped formation of atomically flat and thickness-controlled disks. As disk thickness decreased, the crystal lattice was found to dilate gradually, which has not been observed with CdS quantum dots. Compared with CdS quantum dots and rods, the disks displayed weakened quantum confinement and their photoluminescence lifetime (tens of picoseconds) was about two orders of magnitude shorter.
Algorithm for Calibrating Effective Mass Parameters to consider Quantum Confinement Effects in Ultra-Thin-Body Devices for Various Temperatures
In ultra-thin-body (UTB) MOS devices, the downscaling of the channel length is made possible through the reduction of the channel thickness and oxide thickness, which in turn results in an increasing impact of quantum confinement effects (QCEs) on channel electrostatics, including the integrated electron charge density within the channel. In this work, we present an approach to enable the computationally efficient k.p method-based effective mass approximation (EMA) to consider the effects of quantum confinement while also being able to extend this approach to a wide range of device temperatures for a UTB double-gate (DG) MOS device. In this context, we propose an algorithm to calibrate the effective masses through detailed benchmarking of the eigen energies and integrated electron densities obtained from EMA with results from the band structure-based approach, showing the applicability of this approach to accurately consider QCEs for a wide range of device temperatures (from 15 K to 300 K) and silicon-on-insulator (SOI) channel thicknesses.
Photoanode modified with nanostructures for efficiency enhancement in DSSC: a review
The research on dye-sensitized solar cells (DSSCs) is in the advanced stage today. The only concern observed so far has been regarding its stability and efficiency. Its power conversion efficiency can be increased by incorporating various methods and materials based on nanotechnology. Several attempts have been employed to develop advanced methods for eco-friendly, commercially viable, and sustainable DSSCs to minimize the energy crisis in the future. Photoanode is one of the essential components of DSSCs that can be modified using different nanostructures to enhance its efficiency. The TiO 2 nanoparticle-based photoanode with gold and silver has proven to be potent materials for getting efficient DSSCs. The plasmonic and quantum confinement effects also play a vital role in efficiency enhancement. In this review, we discuss numerous attempts made by researchers in the last decade to modify the photoanode and their progress. We also look at different types of nanostructures, such as quantum dots, metal oxide doping, layered structures, nanocomposites, and thin film formation, that improve the efficiency of DSSCs. Several methods were reviewed to modify photoanodes to optimize electron transportation, light scattering, trapping power, surface area, and reduce charge recombination. The trend in the efficiency enhancement of DSSCs using TiO 2 , Au, ZnO, Ag, and graphene nanostructures-based photoanodes have been explored in great detail.
Electronic and Optical Properties of Two-Dimensional Tellurene: From First-Principles Calculations
Tellurene is a new-emerging two-dimensional anisotropic semiconductor, with fascinating electric and optical properties that differ dramatically from the bulk counterpart. In this work, the layer dependent electronic and optical properties of few-layer Tellurene has been calculated with the density functional theory (DFT). It shows that the band gap of the Tellurene changes from direct to indirect when layer number changes from monolayer (1 L) to few-layers (2 L–6 L) due to structural reconstruction. Tellurene also has an energy gap that can be tuned from 1.0 eV (1 L) to 0.3 eV (6 L). Furthermore, due to the interplay of spin–orbit coupling (SOC) and disappearance of inversion symmetry in odd-numbered layer structures resulting in the anisotropic SOC splitting, the decrease of the band gap with an increasing layer number is not monotonic but rather shows an odd-even quantum confinement effect. The optical results in Tellurene are layer dependent and different in E ⊥ C and E || C directions. The correlations between the structure, the electronic and optical properties of the Tellurene have been identified. Despite the weak nature of interlayer forces in their structure, their electronic and optical properties are highly dependent on the number of layers and highly anisotropic. These results are essential in the realization of its full potential and recommended for experimental exploration.
One-Step Hydrothermal Synthesis of Multicolour Graphene Quantum Dots and Study of Their Luminescence Mechanism
Multicolour graphene quantum dots (GQDs), from blue to orange emitting, were successfully synthesized via a one-step hydrothermal method using potassium hydrogen phthalate and o-phenylenediamine as the raw materials. After purification by silica gel column chromatography, four kinds of GQDs with maximum emission wavelengths of 420 nm (blue), 500 nm (green), 540 nm (yellow), and 555 nm (orange) were obtained, and all had a high quantum yield (9.7%, 8.8%, 9.3%, and 10.3%, respectively). The structural characterization revealed that the synthesized GQDs had a regular morphology, with a size of 2–3 nm and a thickness of 1–2 nm. The D-band-to-G-band ratio was less than 0.3, indicating that the GQDs had a high degree of graphitization. In addition, the emission peaks of the GQDs were red-shifted as the particle size increased, confirming that their luminescence was dominated by the quantum confinement effect. By analyzing the surface states and the functional groups of the multicolour GQDs, it was found that the GQDs had a similar elemental composition, which further proved that the emission wavelengths did not depend on the surface element composition, but conformed to the luminescence mechanism regulated by the quantum-limited effect. Furthermore, the four types of GQDs exhibited low cytotoxicity and good stability, suggesting their potential applications in biomarkers and for the synchronous detection of a variety of analytes.
Band Topology of Bismuth Quantum Films
Bismuth has been the key element in the discovery and development of topological insulator materials. Previous theoretical studies indicated that Bi is topologically trivial and it can transform into the topological phase by alloying with Sb. However, recent high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements strongly suggested a topological band structure in pure Bi, conflicting with the theoretical results. To address this issue, we studied the band structure of Bi and Sb films by ARPES and first-principles calculations. The quantum confinement effectively enlarges the energy gap in the band structure of Bi films and enables a direct visualization of the Z 2 topological invariant of Bi. We find that Bi quantum films in topologically trivial and nontrivial phases respond differently to surface perturbations. This way, we establish experimental criteria for detecting the band topology of Bi by spectroscopic methods.