Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
143 result(s) for "Quaternary climatic fluctuations"
Sort by:
Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot
Aim: To investigate the historical distribution of the Cerrado across Quaternary climatic fluctuations and to generate historical stability maps to test: (1) whether the 'historical climate' stability hypothesis explains squamate reptile richness in the Cerrado; and (2) the hypothesis of Pleistocene connections between savannas located north and south of Amazonia. Location: The Cerrado, a savanna biome and a global biodiversity hotspot distributed mainly in central Brazil. Methods: We generated occurrence datasets from 1000 presence points randomly selected from the entire distribution of the Cerrado, as determined by two spatial definitions. We modelled the potential Cerrado distribution by implementing a maximum-entropy machine-learning algorithm across four time projections: current, mid-Holocene (6 ka), Last Glacial Maximum (LGM, 21 ka) and Last Interglacial (LIG, 120 ka). We generated historical stability maps (refugiai areas) by overlapping presence/absence projections of all scenarios, and checked consistencies with qualitative comparisons with available fossil pollen records. We built a spatially explicit simultaneous autoregressive model to explore the relationship between current climate, climatic stability, and squamate species richness. Results: Models predicted the LGM and LIG as the periods of narrowest and widest Cerrado distributions, respectively, and were largely corroborated by palynological evidence. We found evidence for two savanna corridors (eastern coastal during the LIG, and Andean during the LGM) and predicted a large refugiai area in the north-eastern Cerrado (Serra Geral de Goiás refugium). Variables related to climatic stability predicted squamate richness better than present climatic variables did. Main conclusions: Our results indicate that Bolivian savannas should be included within the Cerrado range and that the Cerrado's biogeographical counterparts are not Chaco and Caatinga but rather the disjunct savannas of the Guyana shield plateaus. Climatic stability is a good predictor of Cerrado squamate richness, and our stability maps could be used in future studies to test diversity patterns and genetic signatures of different taxonomic groups and as a higher-order landscape biodiversity surrogate for conservation planning.
Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidencegeb
Aim To investigate the potential distribution of Seasonally Dry Tropical Forests (SDTFs) during the Quaternary climatic fluctuations; to reassess the formerly proposed ‘Pleistocenic arc hypothesis' (PAH); and to identify historically stable and unstable areas of SDTF distributions in the light of palaeodistribution modelling. Location SDTFs in lowland cis-Andean eastern-central South America. Methods We first developed georeferenced maps depicting the current distributional extent of SDTFs under two distinct definitions (narrow and broad). We then generated occurrence datasets, which were used with current and past bioclimatic variables to predict SDTF occurrence by implementing the maximum entropy machine-learning algorithm. We obtained historical stability maps by overlapping the presence/absence projections of each of three climatic scenarios [current, 6 kyr bp during the Holocene, and 21 kyr bp during the Last Glacial Maximum (LGM)]. Finally, we checked the consistencies of the model prediction with qualitative comparisons of vegetation types inferred from available fossil pollen records. Results The present-day SDTF distribution is disjunct, but we provide evidence that it was even more disjunct during the LGM. Reconstructions support a progressive southward and eastward expansion of SDTFs on a continental scale since the LGM. No significant expansion of SDTFs into the Amazon Basin was detected. Areas of presumed long-term stability are identified and confirmed (the three nuclear regions, Caatinga, Misiones and Piedmont, plus the Chiquitano region), and these possibly acted as current and historical refugial areas. Main conclusions The LGM climate was probably too dry and cold to support large tracts of SDTF, which were restricted to climatically favourable areas relative to the present day (in contrast with the PAH, as it was originally conceived). Expansions of SDTFs are proposed to have occupied the southern portion of Caatinga nucleus more recently during the early-middle Holocene transition. We propose an alternative scenario amenable to further testing of an earlier SDTF expansion (either at the Lower Pleistocene or the Tertiary), followed by fragmentation in the LGM and secondary expansion in the Holocene. The stability maps were used to generate specific genetic predictions at both continental and regional scales (stable areas are expected to have higher genetic diversity and endemism levels than adjacent unstable areas) that can be used to direct field sampling to cover both stable (predicted refugia) and unstable (recently colonized) areas. Lastly, we discuss the possibility that SDTFs may experience future expansion under changing climate scenarios and that both stable and unstable areas should be prioritized by conservation initiatives.
Climate heterogeneity shapes phylogeographic pattern of Hippophae gyantsensis (Elaeagnaceae) in the east Himalaya‐Hengduan Mountains
The interaction of recent orographic uplift and climate heterogeneity acted as a key role in the East Himalaya‐Hengduan Mountains (EHHM) has been reported in many studies. However, how exactly the interaction promotes clade diversification remains poorly understood. In this study, we both used the chloroplast trnT‐trnF region and 11 nuclear microsatellite loci to investigate the phylogeographic structure and population dynamics of Hippophae gyantsensis and estimate what role geological barriers or ecological factors play in the spatial genetic structure. The results showed that this species had a strong east–west phylogeographic structure, with several mixed populations identified from microsatellite data in central location. The intraspecies divergence time was estimated to be about 3.59 Ma, corresponding well with the recent uplift of the Tibetan Plateau. Between the two lineages, there was significant climatic differentiation without geographic barriers. High consistency between lineage divergence, climatic heterogeneity, and Qingzang Movement demonstrated that climatic heterogeneity but not geographic isolation drives the divergence of H. gyantsensis, and the recent regional uplift of the QTP, as the Himalayas, creates heterogeneous climates by affecting the flow of the Indian monsoon. The east group of H. gyantsensis experienced population expansion c. 0.12 Ma, closely associated with the last interglacial interval. Subsequently, a genetic admixture event between east and west groups happened at 26.90 ka, a period corresponding to the warm inter‐glaciation again. These findings highlight the importance of the Quaternary climatic fluctuations in the recent evolutionary history of H. gyantsensis. Our study will improve the understanding of the history and mechanisms of biodiversity accumulation in the EHHM region. It is a heterogeneous climate but not a geographic barrier in the EHHM that shaped phylogeographic structure of H. gyantsensis. The role of high mountains in directing the evolution of H. gyantsensis seems largely to be in creation of highly heterogeneous climates by affecting the flow of the Indian monsoon in this region.
Phylogeography of the Vipera ursinii complex (Viperidae): mitochondrial markers reveal an east-west disjunction in the Palaearctic region
Aim: The aim of this study was to elucidate the phylogeographical pattern of taxa composing the Vipera ursinii complex, for which the taxonomic status and the dating of splitting events have been the subject of much debate. The objectives were to delimit potential refugia and to date splitting events in order to suggest a scenario that explains the diversification of this species complex. Location: Western Europe to Central Asia. Methods: Sequences of the mitochondrial cytochrome b and NADH dehydrogenase subunit 4 (ND4) genes were analysed for 125 individuals from 46 locations throughout the distribution range of the complex. The phylogeographical structure was investigated using Bayesian and maximum likelihood methods. Molecular dating was performed using three calibration points to estimate the timing of diversification. Results: Eighty-nine haplotypes were observed from the concatenation of the two genes. Phylogenetic inferences supported two main groups, referred to in this study as the 'ursinii clade' and the 'renardi clade', within which several subclades were identified. Samples from Greece (Vipera ursinii graeca) represented the first split within the V. ursinii complex. In addition, three main periods of diversification were revealed, mainly during the Pleistocene (2.4-2.0 Ma, 1.4 Ma and 1.0-0.6 Ma). Main conclusions: The present distribution of the V. ursinii complex seems to have been shaped by Quaternary climatic fluctuations, and the Balkan, Caucasus and Carpathian regions are identified in this study as probable refugia. Our results support a south-north pattern of colonization, in contrast to the northsouth colonization previously proposed for this complex. The biogeographical history of the V. ursinii complex corroborates other biogeographical studies that have revealed an east-west disjunction (situated near the Black Sea) within a species complex distributed throughout the Palaearctic region.
Quaternary climatic fluctuations and resulting climatically suitable areas for Eurasian owlets
Aim The nested pattern in the geographical distribution of three Indian owlets, resulting in a gradient of endemicity, is hypothesized to be an impact of historical climate change. In current time, the Forest Owlet Athene blewitti is endemic to central India, and its range is encompassed within the ranges of the Jungle Owlet Glaucidium radiatum (distributed through South Asia) and Spotted Owlet Athene brama (distributed through Iran, South and Southeast Asia). Another phylogenetically close species, Little Owl Athene noctua, which is largely Palearctic in distribution, is hypothesized to have undergone severe range reduction during the Last Glacial Maximum, showing a postglacial expansion. The present study tests hypotheses on the possible role of Quaternary climatic fluctuations in shaping geographical ranges of owlets. Methods We used primary field observations, open access data, and climatic niche modeling to construct climatic niches of four owlets for four periods, the Last Interglacial (~120–140 Ka), Last Glacial Maximum (~22 Ka), Mid‐Holocene (~6 Ka), and Current (1960–1990). We performed climatic niche extent, breadth, and overlap analyses and tested if climatically suitable areas for owlets are nested in a relatively stable climate. Results Climatically suitable areas for all owlets examined underwent cycles of expansion and reduction or a gradual expansion or reduction since the Last Interglacial. The Indian owlets show significant climatic niche overlap in the current period. Climatically suitable areas for Little Owl shifted southwards during the Last Glacial Maximum and expanded northwards in the postglaciation period. For each owlet, the modeled climatic niches were nested in climatically stable areas. Main Conclusions The study highlights the impact of Quaternary climate change in shaping the present distribution of owlets. This is relevant to the current scenario of climate change and global warming and can help inform conservation strategies, especially for the extremely range‐restricted Forest Owlet. Quaternary climatic fluctuations have been hypothesized to shape nested pattern in the geographical distribution shown by sympatric owls including the endangered Forest Owlet. We show that climatically suitable areas for all owlets examined underwent cycles of expansion and reduction or a gradual expansion or reduction since the Last Interglacial. The findings presented here reveal that species' past can be informative and provide clues in studies pertaining to the global climate change and future extinctions.
Millennial-scale climate variability over land overprinted by ocean temperature fluctuations
Variations in regional temperature have widespread implications for society, but our understanding of the amplitude and origin of long-term natural variability is insufficient for accurate regional projections. This is especially the case for terrestrial temperature variability, which is currently thought to be weak over long timescales. By performing spectral analysis on climate reconstructions, produced using sedimentary pollen records from the Northern Hemisphere over the last 8,000 years, coupled with instrumental data, we provide a comprehensive estimate of regional temperature variability from annual to millennial timescales. We show that short-term random variations are overprinted by strong ocean-driven climate variability on multi-decadal and longer timescales. This may cause substantial and potentially unpredictable regional climatic shifts in the coming century, in contrast to the relatively muted and homogeneous warming projected by climate models. Due to the marine influence, regions characterized by stable oceanic climate at sub-decadal timescales experience stronger long-term variability, and continental regions with higher sub-decadal variability show weaker long-term variability. This fundamental relationship between the timescales provides a unique insight into the emergence of a marine-driven low-frequency regime governing terrestrial climate variability and sets the basis to project the amplitude of temperature fluctuations on multi-decadal timescales and longer. Temperature variability over land is enhanced by ocean temperature fluctuations on millennial timescales, with implications for regional-scale climate change, according to an analysis of Northern Hemisphere proxy records and observations.
2500 Years of European Climate Variability and Human Susceptibility
Climate variations influenced the agricultural productivity, health risk, and conflict level of preindustrial societies. Discrimination between environmental and anthropogenic impacts on past civilizations, however, remains difficult because of the paucity of high-resolution paleoclimatic evidence. We present tree ring—based reconstructions of central European summer precipitation and temperature variability over the past 2500 years. Recent warming is unprecedented, but modern hydroclimatic variations may have at times been exceeded in magnitude and duration. Wet and warm summers occurred during periods of Roman and medieval prosperity. Increased climate variability from ∼250 to 600 C.E. coincided with the demise of the western Roman Empire and the turmoil of the Migration Period. Such historical data may provide a basis for counteracting the recent political and fiscal reluctance to mitigate projected climate change.
The Impact of Climate‐Driven Lake Level Changes on Mantle Melting in Continental Rifts
Climate cycles fundamentally control surface processes that affect the distribution of water and sediment, and their associated loads, across the Earth's surface. Here, we use a geodynamic model to examine how water loading can affect mantle melt generation in continental rift settings covered by deep lakes. Our modeling results suggest that lake level fluctuations can modulate the timing and rate of mantle melting. A rapid lake level drop of 800 m has the potential to increase mantle melt volumes by enhancing mantle upwelling beneath the rift, whereas a lake level rise can lead to a reduction of mantle melting. The volume of melt produced driven by lake level fluctuations is also dependent on crustal rheology, extension rate, mantle potential temperature, and lithosphere thickness. Our study identifies the importance of water loading for controlling rift processes, while also demonstrating critical links between changing climate, rift evolution and mantle melting. Plain Language Summary The break‐up of continents produces subsidence and the formation of rift valleys and where the climate is favorable, rift lakes. Changes in effective moisture in response to climate changes drive water level fluctuations in rift lakes, and their associated loads. But our understanding of the interaction between hydroclimate changes and rift basin evolution remains limited. To address this, we employed a geodynamic model to explore how water loading can influence mantle melt production in continental rift environments. Our model suggests that lake level fluctuations can have a detectable effect on the timing and pace of mantle melting. A lake level drop can increase mantle melt volume by enhancing mantle upwelling underneath the rift, while a lake level rise can lead to a reduction in mantle melting. Additionally, the amount of melt produced by these fluctuations depends on factors such as crustal rheology, extension rate, thermal gradient, and lithosphere thickness. Our findings reveal the significance of water loading in governing rift processes and highlight the potential links between changing climate, rift evolution, and mantle melting. Key Points Lake level drops of 800 m can enhance decompressive mantle melting A case study for the Turkana Rift shows a correlation between lake level drops and enhanced volcanism over the last 4 Myr Sensitivity of mantle melting to lake loading is controlled by extension rate, mantle potential temperature, and lithosphere thickness
Lack of evidence for a substantial sea-level fluctuation within the Last Interglacial
During the Last Interglacial, global mean sea level reached approximately 6 to 9 m above the present level. This period of high sea level may have been punctuated by a fall of more than 4 m, but a cause for such a widespread sea-level fall has been elusive. Reconstructions of global mean sea level account for solid Earth processes and so the rapid growth and decay of ice sheets is the most obvious explanation for the sea-level fluctuation. Here, we synthesize published geomorphological and stratigraphic indicators from the Last Interglacial, and find no evidence for ice-sheet regrowth within the warm interglacial climate. We also identify uncertainties in the interpretation of local relative sea-level data that underpin the reconstructions of global mean sea level. Given this uncertainty, and taking into account our inability to identify any plausible processes that would cause global sea level to fall by 4 m during warm climate conditions, we question the occurrence of a rapid sea-level fluctuation within the Last Interglacial. We therefore recommend caution in interpreting the high rates of global mean sea-level rise in excess of 3 to 7 m per 1,000 years that have been proposed for the period following the Last Interglacial sea-level lowstand.
Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles
Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial–interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO 2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago. It's a long story... At over 3 km long, the ice core drilled at Dome C in Antarctica represents a record of 740,000 years, or eight glacial cycles. This will be the longest climate record available for years to come, so information gleaned from it will become a benchmark for Antarctic climate research. An examination of the core shows that sea ice around Antarctica waxed and waned in line with temperature over multimillennial timescales, but less so over shorter periods. During cold periods, larger amounts of dust were produced from a drier Patagonia, landing in the Southern Ocean where they probably affected marine productivity. Oceanic production of sulphur compounds, which might affect cloud nucleation, was remarkably constant throughout the period. Data from the Southern Ocean sea-ice extent, the biological productivity of the ocean, and atmospheric iron flux over the past eight glacial cycles indicate that during glacial terminations, changes in Patagonia apparently preceded Antarctic sea-ice reduction — showing that multiple mechanisms may be responsible for different phases of CO 2 increase during glacial terminations.