Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
15,104 result(s) for "Quenching"
Sort by:
The quenching of the fluorescence of carbon dots: A review on mechanisms and applications
Carbon dots (CDs) possess unique optical properties such as tunable photoluminescence (PL) and excitation dependent multicolor emission. The quenching and recovery of the fluorescence of CDs can be utilized for detecting analytes. The PL mechanisms of CDs have been discussed in previous articles, but the quenching mechanisms of CDs have not been summarized so far. Quenching mechanisms include static quenching, dynamic quenching, Förster resonance energy transfer (FRET), photoinduced electron transfer (PET), surface energy transfer (SET), Dexter energy transfer (DET) and inner filter effect (IFE). Following an introduction, the review (with 88 refs.) first summarizes the various kinds of quenching mechanisms of CDs (including static quenching, dynamic quenching, FRET, PET and IFE), the principles of these quenching mechanisms, and the methods of distinguishing these quenching mechanisms. This is followed by an overview on applications of the various quenching mechanisms in detection and imaging. Graphical abstract Schematic representation of the quenching mechanisms of carbon dots (CDs) which include static quenching, dynamic quenching, Förster resonance energy transfer (FRET), photoinduced electron transfer(PET), surface energy transfer (SET), Dexter energy transfer (DET) and inner filter effect (IFE). All these effects can be used to detect and image analytes.
Carbothermal shock synthesis of high-entropy-alloy nanoparticles
Nanoparticles are useful in a wide range of applications such as catalysis, imaging, and energy storage. Yao et al. developed a method for making nanoparticles with up to eight different elements (see the Perspective by Skrabalak). The method relies on shocking metal salt-covered carbon nanofibers, followed by rapid quenching. The “carbothermal shock synthesis” can be tuned to select for nanoparticle size as well. The authors successfully created PtPdRhRuCe nanoparticles to catalyze ammonia oxidation. Science , this issue p. 1489 ; see also p. 1467 Shocking metal salts dispersed on carbon nanofibers produces nanoparticles composed of up to eight metals. The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~10 5 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.
Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang
Most present-day galaxies with stellar masses ≥1011 solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this \"quenching\" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ∼1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores.
Quenching Sensitivity Study of New High-Strength Aluminum Alloys Based on an Immersion End-Quenching and Step-Quenching Technique
Based on end-quenching and step-quenching experiments combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the quench sensitivity of a novel high-strength aluminum alloy was investigated and compared with that of GB/T 7075 and 7175 alloys; quench factor analysis (QFA) was employed to predict the hardness values of the alloy and investigate the effect of quenching rate on its mechanical properties. The experimental results indicate that when the cooling rate decreases from 402.5 °C/s to 3.6 °C/s, the hardness reduction rate of the novel high-strength aluminum alloy is 15%. Furthermore, the nose temperature of the time–temperature–property (TTP) curve for this alloy is 325 °C, with a critical transformation time of 0.4 s. The quench-sensitive temperature range is 219 °C to 427 °C, which is lower than the quenching sensitivity of 7075 and 7175 alloys. The new alloy reduces its quenching sensitivity by optimizing the composition of alloying elements. Furthermore, the QFA demonstrates high predictive accuracy, with a maximum error of 5%. The smaller the quenching factor τ, the greater the hardness of the alloy after aging. Combined with the TTP curve, the alloy properties are optimized by modulating the quenching rate. This study provides a theoretical basis for selecting hot forming–quenching integrated process parameters in automotive high-strength aluminum alloys.
Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs
The orange carotenoid protein (OCP) is a water-soluble, photoactive protein involved in thermal dissipation of excess energy absorbed by the light-harvesting phycobilisomes (PBS) in cyanobacteria. The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain and a keto-carotenoid. On photoactivation, the OCP converts from a stable orange form, OCPO, to a red form, OCPR. Activation is accompanied by a translocation of the carotenoid deeper into the effector domain. The increasing availability of cyanobacterial genomes has enabled the identification of new OCP families (OCP1, OCP2, OCPX). The fluorescence recovery protein (FRP) detaches OCP1 from the PBS core, accelerating its back-conversion to OCPO; by contrast, other OCP families are not regulated by FRP. N-terminal domain homologs, the helical carotenoid proteins (HCPs), have been found among diverse cyanobacteria, occurring as multiple paralogous groups, with two representatives exhibiting strong singlet oxygen (1O2) quenching (HCP2, HCP3) and another capable of dissipating PBS excitation (HCP4). Crystal structures are presently available for OCP1 and HCP1, and models of other HCP subtypes can be readily produced as a result of strong sequence conservation, providing new insights into the determinants of carotenoid binding and 1O2 quenching.
Nitrogen doped graphene quantum dots as a fluorescent probe for mercury(II) ions
A highly selective fluorescent probe for Hg 2+ is reported. It consists of nitrogen doped graphene quantum dots (NGQDs) that are nearly spherical in shape, have an average diameter of 2.7 nm and excitation-independent emission. The blue fluorescence of the NGQDs (with maximum excitation/emission at 378/447 nm) is quenched by Hg 2+ due to both dynamic and static quenching. The probe has a wide detection range (2.5 μM – 800 μM) and a limit of detection of 2.5 μM. The dynamic and static quenching constants are 417 M −1 and 63500 M −1 , respectively. The probe was used to quantfy Hg 2+ in spiked real water samples with satisfactory results. Graphical abstract
Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm
In vivo fluorescence imaging in the near-infrared region between 1500–1700 nm (NIR-IIb window) affords high spatial resolution, deep-tissue penetration, and diminished auto-fluorescence due to the suppressed scattering of long-wavelength photons and large fluorophore Stokes shifts. However, very few NIR-IIb fluorescent probes exist currently. Here, we report the synthesis of a down-conversion luminescent rare-earth nanocrystal with cerium doping (Er/Ce co-doped NaYbF 4 nanocrystal core with an inert NaYF 4 shell). Ce doping is found to suppress the up-conversion pathway while boosting down-conversion by ~9-fold to produce bright 1550 nm luminescence under 980 nm excitation. Optimization of the inert shell coating surrounding the core and hydrophilic surface functionalization minimize the luminescence quenching effect by water. The resulting biocompatible, bright 1550 nm emitting nanoparticles enable fast in vivo imaging of blood vasculature in the mouse brain and hindlimb in the NIR-IIb window with short exposure time of 20 ms for rare-earth based probes. Fluorescence imaging in the near-infrared window between 1500–1700 nm (NIR-IIb window) offers superior spatial resolution and tissue penetration depth, but few NIR-IIb probes exist. Here, the authors synthesize rare earth down-converting nanocrystals as promising fluorescent probes for in vivo imaging in this spectral region.
Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing
Materials in metastable states, such as amorphous ice and supercooled condensed matter, often exhibit exotic phenomena. To date, achieving metastability is usually accomplished by rapid quenching through a thermodynamic path function, namely, heating−cooling cycles. However, heat can be detrimental to organic-containing materials because it can induce degradation. Alternatively, the application of pressure can be used to achieve metastable states that are inaccessible via heating−cooling cycles. Here we report metastable states of 2D organic−inorganic hybrid perovskites reached through structural amorphization under compression followed by recrystallization via decompression. Remarkably, such pressure-derived metastable states in 2D hybrid perovskites exhibit enduring bandgap narrowing by as much as 8.2% with stability under ambient conditions. The achieved metastable states in 2D hybrid perovskites via compression−decompression cycles offer an alternative pathway toward manipulating the properties of these “soft” materials.
Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluorescent ink
Nitrogen-doped carbon dots (N-CDs) with a quantum yield of 41 ± 3% and excellent stability were prepared and are shown to be viable probes for the determination of ferric ions, which is a strong quencher of fluorescence. The absorption peak of the N-CDs is located at 325 nm. The optimal excitation and emission wavelengths of the N-CDs are 340 nm and 430 nm, respectively. The fluorometric response to Fe(III) is linear in the ranges between 1.0 and 21.0 μM and between 0.05 and 30.0 μM, and the limits of detection are 0.28 μM in case of colorimetry and 13.5 nM in case of fluorometry. Quenching by Fe(III) is mainly attributed to a combination of chelation (static quenching) and inner filter effect. The N-CDs also can be used as a new sort of fluorescent ink owing to the strong luminous performance and chemical inertness. Graphic abstract The illustration for synthesis of the N-CDs and its applications for colorimetric and fluorescent detection of Fe 3+ and fluorescent ink.
Yb- and Er concentration dependence of the upconversion luminescence of highly doped NaYF4:Yb,Er/NaYF4:Lu core/shell nanocrystals prepared by a water-free synthesis
High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion (UC) nanocrystals (UCNC) like NaYF 4 :Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC. UC luminescence (UCL) is, however, controlled not only by dopant concentration, yet by an interplay of different parameters including size, crystal and shell quality, and excitation power density ( P ). Thus, identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy. Here, we quantify the dopant concentration dependence of the UCL quantum yield ( Φ UC ) of solid NaYF 4 :Yb,Er/NaYF 4 :Lu upconversion core/shell nanocrystals of varying Yb 3+ and Er 3+ concentrations (Yb 3+ series: 20%–98% Yb 3+ ; 2% Er 3+ ; Er 3+ series: 60% Yb 3+ ; 2%–40% Er 3+ ). To circumvent other luminescence quenching processes, an elaborate synthesis yielding OH-free UCNC with record Φ UC of ∼9% and ∼25 nm core particles with a thick surface shell were used. High Yb 3+ concentrations barely reduce Φ UC from ∼9% (20% Yb 3+ ) to ∼7% (98% Yb 3+ ) for an Er 3+ concentration of 2%, thereby allowing to strongly increase the particle absorption cross section and UCNC brightness. Although an increased Er 3+ concentration reduces Φ UC from ∼7% (2% Er 3+ ) to 1% (40%) for 60% Yb 3+ . Nevertheless, at very high P (> 1 MW/cm 2 ) used for microscopic studies, highly Er 3+ -doped UCNC display a high brightness because of reduced saturation. These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials.