Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "R848"
Sort by:
The Impact of Prolonged Inflammation on Wound Healing
The treatment of chronic wounds still challenges modern medicine because of these wounds’ heterogenic pathophysiology. Processes such as inflammation, ischemia and bacterial infection play major roles in the progression of a chronic wound. In recent years, preclinical wound models have been used to understand the underlying processes of chronic wound formation. However, the wound models used to investigate chronic wounds often lack translatability from preclinical models to patients, and often do not take exaggerated inflammation into consideration. Therefore, we aimed to investigate prolonged inflammation in a porcine wound model by using resiquimod, a TLR7 and TLR8 agonist. Pigs received full thickness excisional wounds, where resiquimod was applied daily for 6 days, and untreated wounds served as controls. Dressing change, visual documentation and wound scoring were performed daily. Biopsies were collected for histological as well as gene expression analysis. Resiquimod application on full thickness wounds induced a visible inflammation of wounds, resulting in delayed wound healing compared to non-treated control wounds. Gene expression analysis revealed high levels of IL6, MMP1 and CD68 expression after resiquimod application, and histological analysis showed increased immune cell infiltration. By using resiquimod, we were able to show that prolonged inflammation delayed wound healing, which is often observed in chronic wounds in patients. The model we used shows the importance of inflammation in wound healing and gives an insight into the progression of chronic wounds.
Polymeric nanocapsules loaded with poly(I:C) and resiquimod to reprogram tumor-associated macrophages for the treatment of solid tumors
In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play a key immunosuppressive role that limits the ability of the immune system to fight cancer. Toll-like receptors (TLRs) ligands, such as poly(I:C) or resiquimod (R848) are able to reprogram TAMs towards M1-like antitumor effector cells. The objective of our work has been to develop and evaluate polymeric nanocapsules (NCs) loaded with poly(I:C)+R848, to improve drug stability and systemic toxicity, and evaluate their targeting and therapeutic activity towards TAMs in the TME of solid tumors. NCs were developed by the solvent displacement and layer-by-layer methodologies and characterized by dynamic light scattering and nanoparticle tracking analysis. Hyaluronic acid (HA) was chemically functionalized with mannose for the coating of the NCs to target TAMs. NCs loaded with TLR ligands were evaluated for toxicity and immunostimulatory activity by Alamar Blue, ELISA and flow cytometry, using primary human monocyte-derived macrophages. For experiments, the CMT167 lung cancer model and the MN/MCA1 fibrosarcoma model metastasizing to lungs were used; tumor-infiltrating leukocytes were evaluated by flow cytometry and multispectral immunophenotyping. We have developed polymeric NCs loaded with poly(I:C)+R848. Among a series of 5 lead prototypes, protamine-NCs were selected based on their physicochemical properties (size, charge, stability) and characterization, showing good biocompatibility on primary macrophages and ability to stimulate their production of T-cell attracting chemokines (CXCL10, CCL5) and to induce M1-like macrophages cytotoxicity towards tumor cells. In mouse tumor models, the intratumoral injection of poly(I:C)+R848-protamine-NCs significantly prevented tumor growth and lung metastasis. In an orthotopic murine lung cancer model, the intravenous administration of poly(I:C)+R848-prot-NCs, coated with an additional layer of HA-mannose to improve TAM-targeting, resulted in good antitumoral efficacy with no apparent systemic toxicity. While no significant alterations were observed in T cell numbers (CD8, CD4 or Treg), TAM-reprogramming in treated mice was confirmed by the relative decrease of interstitial alveolar macrophages, having higher CD86 expression but lower CD206 and Arg1 expression in the same cells, in treated mice. Mannose-HA-protamine-NCs loaded with poly(I:C)+R848 successfully reprogram TAMs , and reduce tumor progression and metastasis spread in mouse tumors.
TLR7 Agonist Suppresses Group 2 Innate Lymphoid Cell–mediated Inflammation via IL-27–Producing Interstitial Macrophages
Group 2 innate lymphoid cells (ILC2s) play an important role in the pathophysiology of asthma via the robust production of type 2 cytokines. Recent studies have demonstrated that TLR7 (Toll-like receptor 7) signaling skews toward a type 1 inflammatory response in asthma, which may lead to the development of novel treatment strategies. However, the effect of TLR7 signaling on ILC2-dependent nonallergic eosinophilic inflammation remains unclear. In this study, we investigated the effects of R848, a TLR7 agonist, in a mouse model of IL-33–induced eosinophilic airway inflammation. Intranasal administration of R848 decreased infiltration of airway eosinophils and ILC2s, mucus production in epithelial cells, and type 2 cytokine production. Flow cytometric analysis identified an increased number of interstitial macrophages (IMs) expressing a high level of TLR7 in the lung upon IL-33 stimulation. IL-33–induced IMs also expressed high levels of alternatively activated (M2)-type genes and chemokines (CCL17 and CCL24). However, R848 stimulation modified these gene expressions and elicited the production of IL-27. Coculture experiments revealed that IL-33–induced IMs directly suppressed ILC2 activation in response to R848. In addition, the inhibitory effects of R848 on ILC2-induced type 2 inflammation were defective in WSX-1–deficient mice lacking the IL-27 receptor. Taken together, these findings indicate that R848 stimulates IL-33–induced IMs to suppress ILC2-mediated type 2 airway inflammation via IL-27. These findings highlight the therapeutic potential of TLR7 agonists and/or IL-27 cascades in nonallergic asthma.
Regulating Tumor-Associated Macrophage Polarization by Cyclodextrin-Modified PLGA Nanoparticles Loaded with R848 for Treating Colon Cancer
This study aimed to develop a novel and feasible modification strategy to improve the solubility and antitumor activity of resiquimod (R848) by utilizing the supramolecular effect of 2-hydroxypropyl-beta-cyclodextrin (2-HP-β-CD). R848-loaded PLGA nanoparticles modified with 2-HP-β-CD (CD@R848@NPs) were synthesized using an enhanced emulsification solvent-evaporation technique. The nanoparticles were then characterized in vitro by several methods, such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, particle size analysis, and zeta potential analysis. Then, the nanoparticles were loaded with IR-780 dye and imaged using an in vivo imaging device to evaluate their biodistribution. Additionally, the antitumor efficacy and underlying mechanism of CD@R848@NPs in combination with an anti-TNFR2 antibody were investigated using an MC-38 colon adenocarcinoma model in vivo. The average size of the CD@R848@NPs was 376 ± 30 nm, and the surface charge was 21 ± 1 mV. Through this design, the targeting ability of 2-HP-β-CD can be leveraged and R848 is delivered to tumor-supporting M2-like macrophages in an efficient and specific manner. Moreover, we used an anti-TNFR2 antibody to reduce the proportion of Tregs. Compared with plain PLGA nanoparticles or R848, CD@R848@NPs increased penetration in tumor tissues, dramatically reprogrammed M1-like macrophages, removed tumors and prolonged patient survival. The new nanocapsule system is a promising strategy for targeting tumor, reprogramming tumor -associated macrophages, and enhancement immunotherapy.
Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release
Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-a and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required.
R848 Is Involved in the Antibacterial Immune Response of Golden Pompano (Trachinotus ovatus) Through TLR7/8-MyD88-NF-κB-Signaling Pathway
R848 is an imidazoquinoline compound that is a specific activator of toll-like receptor (TLR) 7/8 and is often used in immunological research in mammals and teleosts. However, the immune responses initiated by R848 through the TLR7/8 pathway in response to bacterial infection remain largely unexplored in teleosts. In the current study, we investigated the antibacterial response and the participating signaling pathway initiated by R848 in golden pompano ( Trachinotus ovatus ). We found that R848 could stimulate the proliferation of head kidney lymphocytes (HKLs) in a dose-dependent manner, enhance the survival rate of HKLs, and inhibit the replication of bacteria in vivo . However, these effects induced by R848 were significantly reduced when chloroquine (CQ) was used to blocked endosomal acidification. Additionally, an in vivo study showed that R848 strengthened the antibacterial immunity of fish through a TLR7/8 and Myd88-dependent signaling pathway. A cellular experiment showed that Pepinh-MYD (a Myd88 inhibitor) significantly reduced the R848 - mediated proliferation and survival of HKLs. Luciferase activity analysis showed that R848 enhanced the nuclear factor kappa B (NF-κB) activity, whereas this activity was reduced when CQ and Pepinh-MYD were present. Additionally, when an NF-κB inhibitor was present, the R848-mediated pro-proliferative and pro-survival effects on HKLs were significantly diminished. An in vivo study showed that knockdown of TLR7, TLR8, and Myd88 expression in golden pompano via siRNA following injection of R848 resulted in increased bacterial dissemination and colonization in fish tissues compared to that of fish injection of R848 alone, suggesting that R848-induced antibacterial immunity was significantly reduced. In conclusion, these results indicate that R848 plays an essential role in the antibacterial immunity of golden pompano via the TLR7/8-Myd88-NF-κB- signaling pathway.
Combinational delivery of TLR4 and TLR7/8 agonist enhanced the therapeutic efficacy of immune checkpoint inhibitors to colon tumor
Immunotherapy is regarded as a potent cancer treatment, with DC vaccines playing a crucial role. Although clinical trials have demonstrated the safety and efficacy of DC vaccines, loading antigens in vitro is challenging, and their therapeutic effects remain unpredictable. Moreover, the diverse subtypes and maturity states of DCs in the body could induce both immune responses and immune tolerance, potentially affecting the vaccine's efficacy. Hence, the optimization of DC vaccines remains imperative. Our study discovered a new therapeutic strategy by using CT26 and MC38 mouse colon cancer models, as well as LLC mouse lung cancer models. The strategy involved the synergistic activation of DCs through intertumoral administration of TLR4 agonist high-mobility group nucleosome binding protein 1 (HMGN1) and TLR7/8 agonist (R848/resiquimod), combined with intraperitoneal administration of TNFR2 immunosuppressant antibody. The experimental results indicated that the combined use of HMGN1, R848, and α-TNFR2 had no effect on LLC cold tumors. However, it was effective in eradicating CT26 and MC38 colon cancer and inducing long-term immune memory. The combination of these three drugs altered the TME and promoted an increase in anti-tumor immune components. This may provide a promising new treatment strategy for colon cancer.
Immunomodulatory R848-Loaded Anti-PD-L1-Conjugated Reduced Graphene Oxide Quantum Dots for Photothermal Immunotherapy of Glioblastoma
Glioblastoma multiforme (GBM) is the most severe form of brain cancer and presents unique challenges to developing novel treatments due to its immunosuppressive milieu where receptors like programmed death ligand 1 (PD-L1) are frequently elevated to prevent an effective anti-tumor immune response. To potentially shift the GBM environment from being immunosuppressive to immune-enhancing, we engineered a novel nanovehicle from reduced graphene oxide quantum dot (rGOQD), which are loaded with the immunomodulatory drug resiquimod (R848) and conjugated with an anti-PD-L1 antibody (aPD-L1). The immunomodulatory rGOQD/R8/aPDL1 nanoparticles can actively target the PD-L1 on the surface of ALTS1C1 murine glioblastoma cells and release R848 to enhance the T-cell-driven anti-tumor response. From in vitro experiments, the PD-L1-mediated intracellular uptake and the rGOQD-induced photothermal response after irradiation with near-infrared laser light led to the death of cancer cells and the release of damage-associated molecular patterns (DAMPs). The combinational effect of R848 and released DAMPs synergistically produces antigens to activate dendritic cells, which can prime T lymphocytes to infiltrate the tumor in vivo. As a result, T cells effectively target and attack the PD-L1-suppressed glioma cells and foster a robust photothermal therapy elicited anti-tumor immune response from a syngeneic mouse model of GBM with subcutaneously implanted ALTS1C1 cells.
The Combination of R848 with Sorafenib Enhances Antitumor Effects by Reprogramming the Tumor Immune Microenvironment and Facilitating Vascular Normalization in Hepatocellular Carcinoma
Novel promising strategies for combination with sorafenib are urgently needed to enhance its clinical benefit and overcome toxicity in hepatocellular carcinoma (HCC). the molecular and immunomodulatory antitumor effects of sorafenib alone and in combination with the new immunotherapeutic agent R848 are presented. Syngeneic HCC mouse model is presented to explore the antitumor effect and safety of three sorafenib doses alone, R848 alone, or their combination in vivo. R848 significantly enhances the sorafenib antitumor activity at a low subclinical dose with no obvious toxic side effects. Furthermore, the combination therapy reprograms the tumor immune microenvironment by increasing antitumor macrophages and neutrophils and preventing immunosuppressive signaling. Combination treatment promotes classical M1 macrophage‐to‐FTH1high M1 macrophage transition. The close interaction between neutrophils/classical M1 macrophages and dendritic cells promotes tumor antigen presentation to T cells, inducing cytotoxic CD8+ T cell‐mediated antitumor immunity. Additionally, low‐dose sorafenib, alone or combined with R848, normalizes the tumor vasculature, generating a positive feedback loop to support the antitumor immune environment. Therefore, the combination therapy reprograms the HCC immune microenvironment and normalizes the vasculature, improving the therapeutic benefit of low‐dose sorafenib and minimizing toxicity, suggesting a promising novel immunotherapy (R848) and targeted therapy (tyrosine kinase inhibitors) combination strategy for HCC treatment. Combined treatment with low‐dose sorafenib and R848 reprograms the tumor immune microenvironment by increasing the population and activation of antitumor macrophages and neutrophils. These cells later activate dendritic cells, thus resulting in more efficient antigen presentation to T cells. TNF‐α secreted by T cells contributes to vascular normalization, which in turn supports immune cell infiltration, forming a positive feedback loop.
TLR7/8 ligands R848 and imiquimod induce differentiation of bone marrow cells from patients with myelodysplastic syndrome towards mature neutrophils
Myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML) arise as a consequence of acquisition and progressive accumulation of genetic and epigenetic modifications by haematopoietic stem and progenitor cells (HSPC) which result in an impaired cell differentiation and the clonal expansion of myeloid progenitors leading to blast-cell accumulation in bone marrow (BM) and myelodysplasia. TLRs are expressed on HSPC and play a role in modulating haematopoiesis by instructing commitment to the myeloid lineage, and therefore may have potential therapeutic application. We have determined the in vitro effect of R848 (TLR7/TLR8 agonist) and Imiquimod (TLR7 agonist), on differentiation, apoptosis and cell viability in primary cultures of bone marrow samples from MDS (n = 6) and AML patients (n = 13). Differentiation was determined by a combined approach of conventional flow cytometry and t-SNE (t-distributed stochastic neighbour embedding) analysis based on the expression of cell markers (CD34, CD11b, CD13, CD117 and CD45). Cell viability and apoptosis were determined according to standard procedures. Statistical analyses were performed according to the two-tailed Student’s t test for dual comparison (treated versus control samples). All major cell populations of the differentiation path from blasts towards neutrophils were found. Treatment with R848 or with Imiquimod did not induce significant changes in cell differentiation in AML samples. However, both R848 and, to a lesser extent, Imiquimod were able to induce differentiation of bone marrow cells from MDS patients from myelocytes to mature neutrophils in five out of six samples. Results also showed absence of toxic effects of both ligands on cells from MDS patients, as both apoptosis and cell viability were not altered by treatments. As for the differentiation assays, the effect of both ligands on apoptosis and cell viability in primary cultures from AML patients was not significant. Treatment with TLR7/8 ligands can revert the blockade of myeloid differentiation in most MDS samples and increase the amount of neutrophils, and therefore could represent a potential alternative treatment for MDS patients.