Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
250 result(s) for "RECOMBINACION"
Sort by:
11 beta-Hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress
Glucocorticoid hormones, acting via nuclear receptors, regulate many metabolic processes, including hepatic gluconeogenesis. It recently has been recognized that intracellular glucocorticoid concentrations are determined not only by plasma hormone levels, but also by intracellular 11 beta-hydroxysteroid dehydrogenases (11 beta-HSDs), which interconvert active corticosterone (cortisol in humans) and inert 11-dehydrocorticosterone (cortisone in humans). 11 beta-HSD type 2, a dehydrogenase, thus excludes glucocorticoids from otherwise nonselective mineralocorticoid receptors in the kidney. Recent data suggest the type 1 isozyme (11 beta-HSD-1) may function as an 11 beta-reductase, regenerating active glucocorticoids from circulating inert 11-keto forms in specific tissues, notably the liver. To examine the importance of this enzyme isoform in vivo, mice were produced with targeted disruption of the 11 beta-HSD-1 gene. These mice were unable to convert inert 11-dehydrocorticosterone to corticosterone in vivo. Despite compensatory adrenal hyperplasia and increased adrenal secretion of corticosterone, on starvation homozygous mutants had attenuated activation of the key hepatic gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, presumably, because of relative intrahepatic glucocorticoid deficiency. The 11 beta-HSD-1 -/- mice were found to resist hyperglycemia provoked by obesity or stress. Attenuation of hepatic 11 beta-HSD-1 may provide a novel approach to the regulation of gluconeogenesis
Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia
Vitamin D, the major steroid hormone that controls mineral ion homeostasis, exerts its actions through the vitamin D receptor (VDR). The VDR is expressed in many tissues, including several tissues not thought to play a role in mineral metabolism. Studies in kindreds with VDR mutations (vitamin D-dependent rickets type II, VDDR II) have demonstrated hypocalcemia, hyperparathyroidism, rickets, and osteomalacia. Alopecia, which is not a feature of vitamin D deficiency, is seen in some kindreds. We have generated a mouse model of VDDR II by targeted ablation of the second zinc finger of the VDR DNA-binding domain. Despite known expression of the VDR in fetal life, homozygous mice are phenotypically normal at birth and demonstrate normal survival at least until 6 months. They become hypocalcemic at 21 days of age, at which time their parathyroid hormone (PTH) levels begin to rise. Hyperparathyroidism is accompanied by an increase in the size of the parathyroid gland as well as an increase in PTH mRNA levels. Rickets and osteomalacia are seen by day 35; however, as early as day 15, there is an expansion in the zone of hypertrophic chondrocytes in the growth plate. In contrast to animals made vitamin D deficient by dietary means, and like some patients with VDDR II, these mice develop progressive alopecia from the age of 4 weeks.
Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene
Nodulation and nitrogen fixation genes of Mesorhizobium loti are encoded on the chromosome of the bacterium. Nevertheless, there is strong evidence that these genes can be transferred from an inoculant strain to nonsymbiotic mesorhizobia in the field environment. Here we report that the chromosomal symbiotic element of M. loti strain ICMP3153 is transmissible in laboratory matings to at least three genomic species of nonsymbiotic mesorhizobia. The element is 500 kb in size, integrates into a phe-tRNA gene, and encodes an integrase of the phage P4 family just within its left end. The entire phe-tRNA gene is reconstructed at the left end of the element upon integration, whereas the 3' 17 nucleotides of the tRNA gene are present as a direct repeat at the right end. We termed the element a symbiosis island on the basis of its many similarities to pathogenicity islands. It may represent a class of genetic element that contributes to microbial evolution by acquisition
Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b
\"Soft\" and \"hard\" are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene, Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively) we previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA and protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed \"GSP-1\" (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property
Shu1 promotes homolog bias of meiotic recombination in Saccharomyces cerevisiae
Homologous recombination occurs closely between homologous chromatids with highly ordered recombinosomes through RecA homologs and mediators. The present study demonstrates this relationship during the period of “partner choice” in yeast meiotic recombination. We have examined the formation of recombination intermediates in the absence or presence of Shu1, a member of the PCSS complex, which also includes Psy3, Csm2, and Shu2. DNA physical analysis indicates that Shu1 is essential for promoting the establishment of homolog bias during meiotic homologous recombination, and the partner choice is switched by Mek1 kinase activity. Furthermore, Shu1 promotes both crossover (CO) and non-crossover (NCO) pathways of meiotic recombination. The inactivation of Mek1 kinase allows for meiotic recombination to progress efficiently, but is lost in homolog bias where most doublestrand breaks (DSBs) are repaired via stable intersister joint molecules. Moreover, the Srs2 helicase deletion cells in the budding yeast show slightly reduced COs and NCOs, and Shu1 promotes homolog bias independent of Srs2. Our findings reveal that Shu1 and Mek1 kinase activity have biochemically distinct roles in partner choice, which in turn enhances the understanding of the mechanism associated with the precondition for homolog bias.
Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis
Pathogen resistance (R) genes of the NBS-LRR class (for nucleotide binding site and leucine-rich repeat) are found in many plant species and confer resistance to a diverse spectrum of pathogens. Little is known about the mechanisms that drive NBS-LRR gene evolution in the host-pathogen arms race. We cloned the RPP8 gene (for resistance to Peronospora parasitica) and compared the structure of alleles at this locus in resistant Landsberg erecta (Ler-0) and susceptible Columbia (Col-0) accessions. RPP8-Ler encodes an NBS-LRR protein with a putative N-terminal leucine zipper and is more closely related to previously cloned R genes that confer resistance to bacterial pathogens than it is to other known RPP genes. The RPP8 haplotype in Ler-0 contains the functional RPP8-Ler gene and a nonfunctional homolog, RPH8A. In contrast, the rpp8 locus in Col-0 contains a single chimeric gene, which was likely derived from unequal crossing over between RPP8-Ler and RPH8A ancestors within a Ler-like haplotype. Sequence divergence among RPP8 family members has been accelerated by positive selection on the putative ligand binding region in the LRRs. These observations indicate that NBS-LRR molecular evolution is driven by the same mechanisms that promote rapid sequence diversification among other genes involved in non-self-recognition
Evolution of codon usage bias in Drosophila
We first review what is known about patterns of codon usage bias in Drosophila and make the following points: (i) Drosophila genes are as biased or more biased than those in microorganisms. (ii) The level of bias of genes and even the particular pattern of codon bias can remain phylogenetically invariant for very long periods of evolution. (iii) However, some genes, even very tightly linked genes, can change very greatly in codon bias across species. (iv) Generally G and especially C are favored at synonymous sites in biased genes. (v) With the exception of aspartic acid, all amino acids contribute significantly and about equally to the codon usage bias of a gene. (vi) While most individual amino acids that can use G or C at synonymous sites display a preference for C, there are exceptions: valine and leucine, which prefer G. (vii) Finally, smaller genes tend to be more biased than longer genes. We then examine possible causes of these patterns and discount mutation bias on three bases: there is little evidence of regional mutation bias in Drosophila, mutation bias is likely toward A+T (the opposite of codon usage bias), and not all amino acids display the preference for the same nucleotide in the wobble position. Two lines of evidence support a selection hypothesis based on tRNA pools: highly biased genes tend to be highly and/or rapidly expressed, and the preferred codons in highly biased genes optimally bind the most abundant isoaccepting tRNAs. Finally, we examine the effect of bias on DNA evolution and confirm that genes with high codon usage bias have lower rates of synonymous substitution between species than do genes with low codon usage bias. Surprisingly, we find that genes with higher codon usage bias display higher level's of intraspecific synonymous polymorphism. This may be due to opposing effects of recombination
Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus
Aspergillus flavus, like approximately one-third of ascomycete fungi, is thought to be cosmopolitan and clonal because it has uniform asexual morphology. A. flavus produces aflatoxin on nuts, grains, and cotton, and assumptions about its life history are being used to develop strategies for its biological control. We tested the assumptions of clonality and conspecificity in a sample of 31 Australian isolates by assaying restriction site polymorphisms from 11 protein encoding genes and DNA sequences from five of those genes. A. flavus isolates fell into two reproductively isolated clades (groups I and II). The lack of concordance among gene genealogies among isolates in one of the clades (group I) was consistent with a history of recombination. Our analysis included five strains of the closely related industrial fungus A. oryzae, all of which proved to be clonally related to group I
Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, and ancestral tubulin
Little is known about the division of eukaryotic cell organelles and up to now neither in animals nor in plants has a gene product been shown to mediate this process. A cDNA encoding a homolog of the bacterial cell division protein FtsZ, an ancestral tubulin, was isolated from the eukaryote Physcomitrella patens and used to disrupt efficiently the genomic locus in this terrestrial seedless plant. Seven out of 51 transgenics obtained were knockout plants generated by homologous recombination; they were specifically impeded in plastid division with no detectable effect on mitochondrial division or plant morphology. Implications on the theory of endosymbiosis and on the use of reverse genetics in plants are discussed.
DNA strand annealing is promoted by the yeast Rad52 protein
The Saccharomyces cerevisiae RAD52 gene plays a pivotal role in genetic recombination. Here we demonstrate that yeast Rad52 is a DNA binding protein. To show that the interaction between Rad52 and DNA is direct and not mediated by other yeast proteins and to facilitate protein purification, a recombinant expression system was developed. The recombinant protein can bind both single- and double-stranded DNA and the addition of either Mg2+ or ATP does not enhance the binding of single-stranded DNA. Furthermore, a DNA binding domain was found in the evolutionary conserved N terminus of the protein. More importantly, we show that the protein stimulates DNA annealing even in the presence of a large excess of nonhomologous DNA. Rad52-promoted annealing follows second-order kinetics and the rate is 3500-fold faster than that of the spontaneous reaction. How this annealing activity relates to the genetic phenotype associated with rad52 mutant cells is discussed