Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
215 result(s) for "REGENERATION NATURELLE"
Sort by:
Interpreting recruitment limitation in forests
Studies of tree recruitment are many, but they provide few general insights into the role of recruitment limitation for population dynamics. That role depends on the vital rates (transitions) from seed production to sapling stages and on overall population growth. To determine the state of our understanding of recruitment limitation we examined how well we can estimate parameters corresponding to these vital rates. Our two-part analysis consists of (1) a survey of published literature to determine the spatial and temporal scale of sampling that is basis for parameter estimates, and (2) an analysis of extensive data sets to evaluate sampling intensity found in the literature. We find that published studies focus on fine spatial scales, emphasizing large numbers of small samples within a single stand, and tend not to sample multiple stands or variability across landscapes. Where multiple stands are sampled, sampling is often inconsistent. Sampling of seed rain, seed banks, and seedlings typically span <1 yr and rarely last 5 yr. Most studies of seeding establishment and growth consider effects of a single variable and a single life history stage. By examining how parameter estimates are affected by the spatial and temporal extent of sampling we find that few published studies are sufficiently extensive to capture the variability in recruitment stages. Early recruitment stages are especially variable and require samples across multiple years and multiple stands. Ironically, the longest duration data sets are used to estimate mortality rates, which are less variable (in time) than are early life history stages. Because variables that affect recruitment rates interact, studies of these interactions are needed to assess their full impacts. We conclude that greater attention to spatially extensive and longer duration sampling for early life history stages is needed to assess the role of recruitment limitation in forests.
Functional roles of invasive non-indigenous plants in hurricane-affected subtropical hardwood forests
Native forest species exhibit a well-known range of ecological roles with respect to natural disturbance regimes, from pioneer phase to mature phase, and they regenerate from a range of sources, including dormant seeds, seed rain, pre-established juveniles, and resprouts from damaged adults. In contrast, the ecological roles of invasive, non-indigenous species in forest communities after natural disturbances are not well understood. Some previous studies of invasive species have emphasized their weedy nature and their ability to colonize anthropogenic disturbances. Tropical hardwood hammock forests in southern Florida experience frequent disturbance by hurricanes. Our studies of forest regeneration during two years following a recent severe hurricane suggest that invasive non-indigenous forest species exhibit the same range of ecological roles as native forest species and compete with native species for particular kinds of regeneration opportunities. To study ecological roles of non-indigenous species in regenerating forests after Hurricane Andrew, we set up four large study areas at each of three study sites that had differing amounts of hurricane-caused canopy disturbance. There were two pairs of 30 x 60 m research plots per site, and in each pair there was one control plot and one restoration plot; restoration areas were subject to an aggressive management program, focused on reducing non-indigenous vine cover. Within these study areas we subsampled vegetation in small study plots that were regularly spaced, and conducted vegetation censuses in April (the end of the dry season) and October (the end of the rainy season) for 2 yr, beginning in April 1993. We found that the source of regeneration for forest species was dependent upon the amount of canopy disturbance, the time since disturbance, and the autecology of the constituent species. Overall, 28% of the 90 species were non-indigenous: 34% of the vines (N = 32) and 24% of other life-forms (N = 58). Non-indigenous vines seemed to have a special role; not only could they compete with native vines, but they could also negatively affect the regeneration of other natives from a diverse array of sources including pre-established juveniles and resprouts from damaged adults. Both native and non-indigenous vine cover in unmanipulated study areas increased following the hurricane. Non-indigenous vine species had higher cover than native vine species, and many species formed dense \"blankets.\" Non-indigenous species in general (not just vines) did not differ significantly from native species in seed mass, nor were they restricted to the pioneer type of life history. Many non-indigenous species had invaded forests prior to hurricane disturbance and had their own banks of pre-established juveniles; others recruited from dormant seeds, seed rain, and/or resprouts from pre-established adults. Based on information on source of regeneration and impact on native species, we propose a classification scheme for functional roles of non-indigenous invasive species in forests. To investigate whether non-indigenous taxa had roles in other geographic regions similar to those they had in Florida, we reviewed literature for 50 taxa belonging to genera that have species known to be invasive in southern Florida. We found that these taxa were invasive or had congeners that were invasive in other geographic regions (Western Australia, the Mariana Islands, Hawaii, the Mascarene Islands, and South Africa). We propose that taxa predominantly retain their invasive, functional-role type across regions. Thus, studies of ecological roles of invasive species with respect to natural disturbance regimes in one region may help us predict invasive roles in other regions.
Effects of fire size and pattern on early succession in Yellowstone National Park
The Yellowstone fires of 1988 affected >250 000 ha, creating a mosaic of burn severities across the landscape and providing an ideal opportunity to study effects of fire size and pattern on postfire succession. We asked whether vegetation responses differed between small and large burned patches within the fire-created mosaic in Yellowstone National Park (YNP) and evaluated the influence of spatial patterning on the postfire vegetation. Living vegetation in a small (1 ha), moderate (70-200 ha), and large (500-3600 ha) burned patch at each of three geographic locations was sampled annually from 1990 to 1993. Burn severity and patch size had significant effects on most biotic responses. Severely burned areas had higher cover and density of lodgepole pine seedlings, greater abundance of opportunistic species, and lower richness of vascular plant species than less severely burned areas. Larger burned patches had higher cover of tree seedlings and shrubs, greater densities of lodgepole pine seedlings and opportunistic species, and lower species richness than smaller patches. Herbaceous species present before the fires responded individually to burn severity and patch size; some were more abundant in large patches or severely burned areas, while others were more abundant in small patches or lightly burned areas. To date, dispersal into the burned areas from the surrounding unburned forest has not been an important mechanism for reestablishment of forest species. Most plant cover in burned areas consisted of resprouting survivors during the first 3 yr after the fires. A pulse of seedling establishment in 1991 suggested that local dispersal from these survivors was a dominant mechanism for reestablishment of forest herbs. Succession across much of YNP appeared to be moving toward plant communities similar to those that burned in 1988, primarily because extensive biotic residuals persisted even within very large burned areas. However, forest reestablishment remained questionable in areas of old (>400 yr) forests with low prefire serotiny. Despite significant effects of burn severity and patch size, the most important explanatory variable for most biotic responses was geographic location, particularly as related to broad-scale patterns of serotiny in Pinus contorta. We conclude that the effects of fire size and pattern were important and some may be persistent, but that these landscape-scale effects occurred within an overriding context of broader scale gradients.
Impact of forest fragmentation on seedling abundance in a tropical rain forest
To evaluate the impact of fragmentation on forest regeneration, I measured the abundance of shade-tolerant, mature-phase tree seedlings (individuals 5-100 cm tall) in unfragmented and fragmented vegetation in three sites near Manaus, Brazil. The habitats studied were (1) continuous forest (control, n = 5); (2) 100-ha fragments (n = 2); (3) 10-ha fragments (n = 4); and (4) 1-ha fragments (n = 5). For 10- and 100-ha fragments, seedling density was measured in the center, the edge, and the corner of the fragments, and at 20-m intervals up to 100 m away from the fragment's edge. The density of seedlings declined significantly from continuous forest to forest fragments. Corners of 100-ha fragments had lower densities of seedlings than plots in centers and edges. In both 100- and 10-ha fragments, edge seedling density increased toward forest interior, but the increment was significant for only one site. Edge effects were more important than area effects per se in affecting seedling abundance. Overall, the centers of larger fragments (100 ha) did not have significantly higher densities of tree seedlings than smaller ones (10 and 1 ha). I suggest that a decrease in seed rain produced by increased tree mortality, reduced seed output and dispersal, high seed predation, and lower seedling establishment might explain the lower seedling numbers observed in forest fragments and fragment edges. These results suggest that forest fragmentation at Manaus may affect the regenerative potential of the forest.
Competition and facilitation on elevation gradients in subalpine forests of the northern Rocky Mountains, USA
The relative importance of competition and facilitation has been hypothesized to change with variation in abiotic conditions. I examined the relative importance of competition and facilitation along elevation gradients in the northern Rocky Mountains where Pinus albicaulis and Abies lasiocarpa dominate the overstory. At lower elevations and in more sheltered sites, A. lasiocarpa seedlings, saplings, and trees were not spatially associated with mature P. albicaulis, whereas at high-elevation sites along exposed ridges near timberline A. lasiocarpa were highly aggregated around mature P. albicaulis. I also compared growth rates of A. lasiocarpa trees before and after the death of adjacent P. albicaulis to growth rates of A. lasiocarpa in the same years but adjacent to living trees. In the Bitterroot Mts. A. lasiocarpa responded positively to the death of adjacent P. albicaulis at low-elevation sites (7% increase), but negatively at high-elevation sites (24% decrease). This suggests that facilitation was more important at timberline sites characterized by abiotic extremes and competition was more important in more moderate abiotic conditions. At high-elevation sites in both mountain ranges, large A. lasiocarpa were 2-4 times more aggregated with P. albicaulis than A. lasiocarpa seedlings. At the high-elevation site in the Bitterroots, growth rates of large A. lasiocarpa were significantly lower in open microsites than when trees were adjacent to either living or dead P. albicaulis. In contrast, growth rates of small saplings did not differ among these microsites. Stronger facilitative effects on mature trees than on seedlings or saplings may develop because the winter snowpack protects small A. lasiocarpa from blowing ice and snow. After trees grow above the snowpack shelter from large P. albicaulis may be crucial. These results emphasize the importance of studying interspecific interactions over a range of conditions; in these forests both positive and negative interactions occur between A. lasiocarpa and P. albicaulis, but their relative importance depends on abiotic conditions and plant life history stage.
Fire severity and vegetation response in the boreal Swedish forest
We studied plant survival and colonization over an experimental gradient, from fire lightly scorching the soil to fire consuming most of the organic soil layer, at two forest sites in northern Sweden. The gradient was achieved by adding different amounts of fuel to small plots that were burned in 1988 and 1989. Temperature was recorded at four soil strata during burning. We analyzed survival of seeds and rhizomes in the soil immediately after fire, and followed vegetation cover and seedling establishment until 1993. During fire, there was a steep decline in maximum temperature with increasing depth below the char, irrespective of the depth of burn in the mor layer, indicating that burn depth can be used as a general indicator of heat impact below ground. Lethal temperature was not recorded deeper than 20-30 mm under the burn boundary. Plant survival was determined both by depth of burn and by depth distribution of regenerative structures in the soil. Three rhizomatous species, the dwarf shrubs Vaccinium myrtillus and Vaccinium vitis-idaea and the grass Deschampsia flexuosa, were dominant in the prefire vegetation. For all three species, the bulk of the soil bud bank was located within the mor layer, but was more superficial for D. flexuosa. Initial mortality in the bud bank was progressively higher with increasing depth of burn, and this determined the regrowth over the following years. After fires that consumed only the moss layer, cover of the Vaccinium species returned to prefire levels within 2-4 yr, and D. flexuosa showed a dramatic increase in cover as well as in fruiting. Fires that burned slightly deeper nearly eliminated D. flexuosa, and the deepest burning fires also eliminated Vaccinium spp. In contrast to regrowth from rhizomes, colonization from seed was better after relatively deep-burning fire, both for species with a soil seed bank and for species dispersing seed onto the burnt soil. However, after fires consuming most of the organic soil layer, seed bank species were also badly affected, whereas dispersers showed progressively better establishment with increasing depth of burn. Differences between treatments were still great after 5 yr, indicating that variation in depth of burn will have a long-lasting impact on the vegetation. These results from experimentally burned plots were corroborated by an analysis of depth distribution of viable plant rhizomes and seeds, and the initial colonization at a site newly burned in a wildfire. The precise response patterns of boreal vegetation to variation in burn depth will depend on characteristics of the species present. However, we assume that these results have a high degree of generality, since, in podzolized soils, most rhizomatous species are predominantly located in the mor layer, since the dormant seed bank typically is concentrated at the interface of mor and mineral soil, and also since a thick organic soil layer is a poor seedbed for incoming seeds. The results indicate that in boreal forest, depth of burn is a more important variable than fire front intensity for the understory vegetation, in contrast to the situation in ecosystems with little accumulation of organic material on the mineral soil.
Aspen, elk, and fire in northern Yellowstone National Park
Most stands of trembling aspen (Populus tremuloides) in northern Yellowstone National Park appear to have become established between 1870 and 1890, with little regeneration since 1900. There has been controversy throughout this century regarding the relative roles of browsing by elk (Cervus elaphus) and fire suppression in preventing aspen regeneration. Fires in 1988 burned 22% of the northern ungulate winter range in the park, and created an unusual opportunity to investigate interactions between fire, ungulate browsing, and aspen regeneration. We tested two hypotheses. (1) The fires would stimulate such prolific sprouting of new aspen stems in burned stands that many stems would escape ungulate browsing and regenerate a canopy of large aspen stems. (2) Browsing pressure would be so intense that it would inhibit aspen canopy regeneration in the burned stands, despite prolific sprouting, but increased forage production in the burned areas would attract elk so that they would not seek out remote aspen stands, and hence, aspen regeneration would occur in unburned aspen stands remote from the burned areas. We sampled aspen sprout density, height, growth form, and browsing intensity in six burned aspen stands, six unburned stands close ([is less than] 1 km) to the burned area, and six unburned stands remote ([is greater than] 4 km) from the burned area. Density of sprouts was generally greater in the burned stands than in the unburned stands in spring 1990 (2 yr after the fires), but was approaching the density of unburned stands by fall 1991. There were no significant differences in browsing intensity (percent of aspen sprouts browsed by ungulates) in 1990 or 1991 among burned, unburned close, or unburned remote stands, nor were there differences in relation to growth form (juvenile vs. adult sprouts). Unbrowsed sprouts generally were lower than the depth of the snowpack, suggesting that elk browsed nearly all sprouts that were accessible. The age distribution of 15 aspen stands across the northern winter range indicated that regeneration of large canopy stems had been episodic even prior to the establishment of the park in 1872. The period 1870-1890, when the present-day aspen stands were generated, was historically unique: numbers of elk and other browsers were low, climate was relatively wet, extensive fires had recently occurred, and large mammalian predators of elk (e.g., wolf, Canis lupus) were present. This combination of events has not recurred since 1900. The recent paucity of aspen regeneration in northern Yellowstone National Park cannot be explained by any single factor (e.g., excessive elk numbers or fire suppression) but involves a complex interaction among factors.
Regeneration of northern red oak: positive and negative effects of competitor removal
The decreased ability of northern red oak (Quercus rubra) to regenerate throughout its range in the eastern United States has important ecological and economic implications. We studied regeneration of northern red oak in oak and pine stands on moderately productive sites in northern Lower Michigan. Our objectives were (1) to investigate the hypothesis that regeneration of northern red oak is more successful in pine than in oak stands and (2) to test whether removal of potential overstory and understory competitors increases regeneration success on moderately productive sites. Northern red oak acorns and 2-yr-old nursery seedlings were planted in spring 1991 in three natural oak stands and three red pine (Pinus resinosa) plantations on comparable, moderately productive sites. Each stand contained four canopy cover treatments: clearcut, 25% cover (50% the first year), 75% cover, and uncut. Each canopy cover treatment contained four understory treatments: herb-layer removal, shrub-layer removal, litter removal, and control. Seedling survival, performance, and damage due to deer and late spring frosts were quantified along with vegetation characteristics, light, soil moisture, air temperature, soil temperature, and precipitation during the 1991 and 1992 growing seasons. Survival of seedlings was significantly lower in the pine than in the oak stands; the pine stands had a higher incidence of white-tailed deer browsing and lower levels of belowground resources than the oak stands. Canopy cover treatments produced a gradient from high stress (low light and soil moisture) and low disturbance (slight browing and frost damage) in uncut plots to low stress (high light and soil moisture) and high disturbance (high browsing and frost damage) in clear-cut plots. Understory vegetation development and soil temperature were low in uncut plots, high in clear-cut plots, and intermediate in plots with partial overstory removal. Despite poor growth, the mortality of seedlings planted in uncut plots was low. In contrast, mortality was high and surviving seedlings exhibited good growth in clearcuts. Understory treatment effects were slight compared with overstory treatment effects. Results on our sites (1) do not support the hypothesis that regeneration success of northern red oak may be greater in pine than in oak stands and (2) indicate that the positive effects of removing potential competitors on seedling growth and physiological status may be compromised by simultaneous negative effects of browsing and frost damage.
Forest regeneration of logged and unlogged forests of Kibale National Park, Uganda
Processes of forest regeneration in two unlogged areas and in three areas that were logged nearly 25 years ago were quantified in Kibale National Park, Uganda. For forests to recover from logging, one would predict recruitment and growth processes to be accelerated in logged areas relative to unlogged areas, facilitating increased recruitment of trees into the adult size classes. We examined this prediction first by determining the growth of 4733 trees over a 51 to 56 month period and found that growth rates in the most heavily logged area were consistently slower than in the two unlogged areas. In contrast, the lightly logged forest had similar growth rates to unlogged areas in the small size classes, but trees in the 30 to 50 cm DBH size cohort exhibited elevated growth rates relative to the unlogged areas. Mortality was highest in the heavily logged areas, with many deaths occurring when healthy trees were knocked over by neighboring treefalls. We found no difference in the density or species richness of seedlings in the logged and unlogged forests. The number of seedlings that emerged from the disturbed soil (seed bank+seed rain) and initially seed-free soil (seed rain) was greater in the logged forest than in the unlogged forest. However, sapling density was lower in the heavily logged areas, suggesting that there is a high level of seedling mortality in logged areas. We suggest that the level of canopy opening created during logging, the lack of aggressive colonizing tree species, elephant activity that is concentrated in logged areas, and an aggressive herb community, all combine to delay vegetation recovery in Kibale Forest.
Life history diversity of canopy and emergent trees in a Neotropical rain forest
To assess the diversity of tropical tree life histories, a conceptual framework is needed to guide quantitative comparative study of many species. We propose one such framework, which focuses on long-term performance through ontogeny and over the natural range of microsites. For 6 yr we annually evaluated survival, growth, and microsite conditions of six non-pioneer tree species in primary tropical wet forest at the La Selva Biological Station, Costa Rica. The species were: Lecythis ampla, Hymenolobium mesoamericanum, Dipteryx panamensis, Pithecellobium elegans, Hyeronima alchorneoides (all emergents), and Minquartia guianensis (a canopy species). The study was based on long-term measurement of individuals from all post-seedling size classes. Trees were sampled from 150 ha of primary forest spanning several watersheds and soil types. To evaluate individuals' microsites we recorded the number of overtopping crowns, forest phase (gap, building, mature), and crown illumination index (an estimate of the tree's light environment). For comparison, we also evaluated the microsites of three species that have been categorized as pioneers (Cecropia insignis, C. obtusifolia) or high-light demanders (Simarouba amara). For the six species of non-pioneers, mortality rates declined with increasing juvenile size class. As a group, these emergent and canopy trees showed a much lower exponential annual mortality rate (0.44%/yr at >10 cm diameter) than has been found for the La Selva forest as a whole. Growth rates increased with juvenile size class for all six species. As adults (trees >30 cm in diameter), all five emergent species showed substantial annual diameter increments (medians of 5-14 mm/yr). Small saplings and adults of all species had significant year-to-year variation in diameter growth, with much greater growth occurring in the year of lowest rainfall. Passage time analysis suggests that all six species require >150 yr for growth from small saplings to the canopy. Evaluation of all nine species revealed four patterns of microsite occupancy by juveniles. Among the non-pioneers, one species pair (Lecythis and Minquartia: Group A) was associated with low crown illumination and mature-phase forest in all juvenile stages. For two species (Dipteryx and Hymenolobium: Group B) the smallest saplings were in predominantly low-light, mature-forest sites, but crown illumination and association with gap- or building-phase sites increased with juvenile size (Simarouba also showed this pattern). Two species (Pithecellobium and Hyeronima: Group C) were strongly associated with gap or building phase as small juveniles (@<4 cm diameter) and again as subcanopy trees (>10-20 cm diameter), but were predominantly in mature-phase sites at intermediate sizes. Juveniles of the two pioneer species (Cecropia: Group D) showed the highest crown illumination and association with gap or building sites. Among the six non-pioneer species, only one aspect of juvenile performance clearly varied according to microsite group. The smallest saplings (@<1 cm diameter) of Groups B and C showed significant mortality differences across a small gradient in crown illumination; neither of the Group A species showed this pattern. Otherwise, juvenile performance was strikingly similar among the six species. All showed a capacity for growth responses to small increases in light, substantial height and diameter increments at higher light levels, equal ability to survive 4-yr periods of no growth, and very low mortality rates at intermediate-to-large juvenile sizes. Species differed significantly in growth rates, but relative differences shifted with tree size and were unrelated to microsite group. These findings do not support prevailing paradigms concerning trade-offs and correlated suites of traits. For non-pioneer tropical trees, life history classification based on generalized concepts such as gap dependence and shade tolerance is inadequate to describe the complex size-dependent patterns of life history differences and similarities that exist among species.