Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
183 result(s) for "REGULATORY MECHANISMS AND PROCESSES"
Sort by:
Oligosaccharins, Brassinolides, and Jasmonates: Nontraditional Regulators of Plant Growth, Development, and Gene Expression
Each of the nontraditional plant hormones reviewed in this article, oligosaccharins, brassinolides, and JA, can exert major effects on plant growth and development. However, in many cases, the mechanisms by which these compounds are involved in the endogenous regulation of morphogenesis remain to be established. Nevertheless, the use of mutant or transgenic plants with altered levels or perception of these hormones is leading to phenomenal increases in our understanding of the roles they play in the life cycle of plants. It is likely that in the future, novel modulators of plant growth and development will be identified; some will perhaps be related to the peptide encoded by ENOD40 (Van de Sande et al., 1996), which modifies the action of auxin.
Coordination of plant metabolism and development by the circadian clock
Many plant cellular activities occur with a daily rhythmicity. In some cases, the rhythmicity of these cellular activities is maintained in plants growing under constant environmental conditions, such as continuous light (LL) or darkness (DD) and constant temperature. Because rhythms can persist in the absence of external time cues (known as free-running conditions), they must be driven by an internal oscillator. This oscillator, which is known as the circadian clock, generates circadian rhythms. For the circadian clock to regulate rhythms such that they occur at the correct time of day throughout the year, it must be able to perceive the seasonal changes in day length. This adjustment of the clock is known as entrainment, and the environmental cues that are perceived are called Zeitgebers, from the German word meaning \"time giver.\" Thus, the circadian clock can be considered to be an internal processor of temporal inputs from the environment (such as light and temperature). Output from the processor regulates the timing of metabolic and developmental events within the plant.
Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression
Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis - and trans -expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis -eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans -eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans -eQTL. Trans -eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes. Analyses of expression profiles from whole blood of 31,684 individuals identify cis -expression quantitative trait loci (eQTL) effects for 88% of genes and trans -eQTL effects for 37% of trait-associated variants.
Molecular process control for industrial biotechnology
The ongoing paradigm shift in industrial biotechnology requires advanced process control strategies for maximum productivity, especially for the anticipated future mass production of biotechnological food proteins.Molecular process control creates a missing link between molecular and macroscopic bioprocess design, thus offering multilayered control.The independent control of growth and product formation rates in fermentation processes is one of the key advantages of applying molecular process control.By using molecular process control as a tool for precision fermentation, the last mile in process optimization can be covered.High-performance bioprocesses and knowledge-based control solutions contribute to achieving the goals of the bioeconomy. The development of sustainable and economically competitive biotechnological processes is a central challenge of modern industrial biotechnology. Conventional strategies such as macroscopic and molecular bioprocess design are often insufficient to exploit their full potential. To circumvent this, molecular process control provides the missing link to further consolidate various optimization strategies to achieve multilayered process design. This review highlights the molecular mechanisms that can be exploited for molecular process control. These can either be endogenous or specifically implemented into the organism, and comprise regulatory mechanisms at the transcriptional, translational, and system levels. In addition to serving as a design tool to enhance existing bioprocesses, molecular process control is the gateway to biotechnological advances that will extend the boundaries of future process design. The development of sustainable and economically competitive biotechnological processes is a central challenge of modern industrial biotechnology. Conventional strategies such as macroscopic and molecular bioprocess design are often insufficient to exploit their full potential. To circumvent this, molecular process control provides the missing link to further consolidate various optimization strategies to achieve multilayered process design. This review highlights the molecular mechanisms that can be exploited for molecular process control. These can either be endogenous or specifically implemented into the organism, and comprise regulatory mechanisms at the transcriptional, translational, and system levels. In addition to serving as a design tool to enhance existing bioprocesses, molecular process control is the gateway to biotechnological advances that will extend the boundaries of future process design.
Research Progress on Microbial Nitrogen Conservation Technology and Mechanism of Microorganisms in Aerobic Composting
With economic development and improvements in living standards, the demand for livestock products has steadily increased, resulting in the generation of large amounts of livestock manure, which seriously pollutes the ecological environment and poses a threat to human health. High-temperature aerobic composting is an effective method for treating livestock manure; however, traditional composting processes often lead to considerable nitrogen loss, reduced efficiency of soil conditioners, and increased emissions of harmful gases. The incorporation of physical, chemical, and biological additives can effectively retain nitrogen within the compost. Among these, microbial agents are particularly noteworthy as they precisely regulate the microbial community structure associated with nitrogen transformation during aerobic composting, altering the abundance of functional genes and enzyme activities involved in nitrogen transformation. This approach significantly reduces nitrogen loss and harmful gas emissions. This paper reviews the application effects of microbial agents on nitrogen retention during aerobic composting and explores the underlying regulatory mechanisms, aiming to provide theoretical guidance and new research directions for the application of microbial agents in enhancing nitrogen retention during aerobic composting.
Axonal transport
Neurons are remarkably polarized in that proteins made in the cytosol often need to travel many tens or hundreds of cell body lengths along axons to their sites of action in the synapse. Axonal transport of these components is driven by molecular motors along axonal microtubules. Guedes-Dias and Holzbaur review the cell biology of axonal transport and highlight the roles this fundamental process plays in organismal health. Science , this issue p. eaaw9997 The intracellular transport system in neurons is specialized to an extraordinary degree, enabling the delivery of critical cargo to sites in axons or dendrites that are far removed from the cell center. Vesicles formed in the cell body are actively transported by kinesin motors along axonal microtubules to presynaptic sites that can be located more than a meter away. Both growth factors and degradative vesicles carrying aged organelles or aggregated proteins take the opposite route, driven by dynein motors. Distance is not the only challenge; precise delivery of cargos to sites of need must also be accomplished. For example, localized delivery of presynaptic components to hundreds of thousands of “en passant” synapses distributed along the length of a single axon in some neuronal subtypes provides a layer of complexity that must be successfully navigated to maintain synaptic transmission. We review recent advances in the field of axonal transport, with a focus on conceptual developments, and highlight our growing quantitative understanding of neuronal trafficking and its role in maintaining the synaptic function that underlies higher cognitive processes such as learning and memory.
Research advances in the identification of regulatory mechanisms of surfactin production by Bacillus: a review
Surfactin is a cyclic hexalipopeptide compound, nonribosomal synthesized by representatives of the Bacillus subtilis species complex which includes B. subtilis group and its closely related species, such as B. subtilis subsp subtilis, B. subtilis subsp spizizenii, B. subtilis subsp inaquosorum , B. atrophaeus, B. amyloliquefaciens, B. velezensis (Steinke mSystems 6: e00057, 2021) It functions as a biosurfactant and signaling molecule and has antibacterial, antiviral, antitumor, and plant disease resistance properties. The Bacillus lipopeptides play an important role in agriculture, oil recovery, cosmetics, food processing and pharmaceuticals, but the natural yield of surfactin synthesized by Bacillus is low. This paper reviews the regulatory pathways and mechanisms that affect surfactin synthesis and release, highlighting the regulatory genes involved in the transcription of the srfAA-AD operon. The several ways to enhance surfactin production, such as governing expression of the genes involved in synthesis and regulation of surfactin synthesis and transport, removal of competitive pathways, optimization of media, and fermentation conditions were commented. This review will provide a theoretical platform for the systematic genetic modification of high-yielding strains of surfactin. Graphical Abstract