Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,106 result(s) for "RF and Optical Engineering"
Sort by:
Towards higher-dimensional structured light
Structured light refers to the arbitrarily tailoring of optical fields in all their degrees of freedom (DoFs), from spatial to temporal. Although orbital angular momentum (OAM) is perhaps the most topical example, and celebrating 30 years since its connection to the spatial structure of light, control over other DoFs is slowly gaining traction, promising access to higher-dimensional forms of structured light. Nevertheless, harnessing these new DoFs in quantum and classical states remains challenging, with the toolkit still in its infancy. In this perspective, we discuss methods, challenges, and opportunities for the creation, detection, and control of multiple DoFs for higher-dimensional structured light. We present a roadmap for future development trends, from fundamental research to applications, concentrating on the potential for larger-capacity, higher-security information processing and communication, and beyond.It is the first perspective or review that considers the dimensionality that may be reached with structured light, as well as the opportunities and challenges in pursuing this.
Dielectric metalens for miniaturized imaging systems: progress and challenges
Lightweight, miniaturized optical imaging systems are vastly anticipated in these fields of aerospace exploration, industrial vision, consumer electronics, and medical imaging. However, conventional optical techniques are intricate to downscale as refractive lenses mostly rely on phase accumulation. Metalens, composed of subwavelength nanostructures that locally control light waves, offers a disruptive path for small-scale imaging systems. Recent advances in the design and nanofabrication of dielectric metalenses have led to some high-performance practical optical systems. This review outlines the exciting developments in the aforementioned area whilst highlighting the challenges of using dielectric metalenses to replace conventional optics in miniature optical systems. After a brief introduction to the fundamental physics of dielectric metalenses, the progress and challenges in terms of the typical performances are introduced. The supplementary discussion on the common challenges hindering further development is also presented, including the limitations of the conventional design methods, difficulties in scaling up, and device integration. Furthermore, the potential approaches to address the existing challenges are also deliberated.This review outlines the exciting developments in high-performance dielectric metalenses whilst highlighting the challenges of using dielectric metalenses to replace conventional optics in miniature optical systems.
Angular momentum holography via a minimalist metasurface for optical nested encryption
Metasurfaces can perform high-performance multi-functional integration by manipulating the abundant physical dimensions of light, demonstrating great potential in high-capacity information technologies. The orbital angular momentum (OAM) and spin angular momentum (SAM) dimensions have been respectively explored as the independent carrier for information multiplexing. However, fully managing these two intrinsic properties in information multiplexing remains elusive. Here, we propose the concept of angular momentum (AM) holography which can fully synergize these two fundamental dimensions to act as the information carrier, via a single-layer, non-interleaved metasurface. The underlying mechanism relies on independently controlling the two spin eigenstates and arbitrary overlaying them in each operation channel, thereby spatially modulating the resulting waveform at will. As a proof of concept, we demonstrate an AM meta-hologram allowing the reconstruction of two sets of holographic images, i.e., the spin-orbital locked and the spin-superimposed ones. Remarkably, leveraging the designed dual-functional AM meta-hologram, we demonstrate a novel optical nested encryption scheme, which is able to achieve parallel information transmission with ultra-high capacity and security. Our work opens a new avenue for optionally manipulating the AM, holding promising applications in the fields of optical communication, information security and quantum science.
Low-threshold topological nanolasers based on the second-order corner state
Topological lasers are immune to imperfections and disorder. They have been recently demonstrated based on many kinds of robust edge states, which are mostly at the microscale. The realization of 2D on-chip topological nanolasers with a small footprint, a low threshold and high energy efficiency has yet to be explored. Here, we report the first experimental demonstration of a topological nanolaser with high performance in a 2D photonic crystal slab. A topological nanocavity is formed utilizing the Wannier-type 0D corner state. Lasing behaviour with a low threshold of approximately 1 µW and a high spontaneous emission coupling factor of 0.25 is observed with quantum dots as the active material. Such performance is much better than that of topological edge lasers and comparable to that of conventional photonic crystal nanolasers. Our experimental demonstration of a low-threshold topological nanolaser will be of great significance to the development of topological nanophotonic circuitry for the manipulation of photons in classical and quantum regimes.Nanophotonics: Creating better performing topological lasersA high-performance topological laser could pave the way for its use in a wide range of nanophotonic applications. Semiconductor lasers are the most common type of laser, but their performance deteriorates if there are any structural defects in the lasing material. Topological lasers allow light to travel around a cavity of any shape without scattering, promising better performing lasers. However, creating a topological laser with a low threshold for lasing and high efficiency has proved challenging. A team of Chinese researchers led by Xiulai Xu from the Chinese Academy of Sciences have now developed a topological laser made from a two-dimensional photonic crystal nanocavity slab with a lasing threshold of about one micro-watt and high spontaneous emission coupling factor of 0.25 and is comparable to the performance of conventional semiconductor lasers.
Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces
Photonic devices rarely provide both elaborate spatial control and sharp spectral control over an incoming wavefront. In optical metasurfaces, for example, the localized modes of individual meta-units govern the wavefront shape over a broad bandwidth, while nonlocal lattice modes extended over many unit cells support high quality-factor resonances. Here, we experimentally demonstrate nonlocal dielectric metasurfaces in the near-infrared that offer both spatial and spectral control of light, realizing metalenses focusing light exclusively over a narrowband resonance while leaving off-resonant frequencies unaffected. Our devices attain this functionality by supporting a quasi-bound state in the continuum encoded with a spatially varying geometric phase. We leverage this capability to experimentally realize a versatile platform for multispectral wavefront shaping where a stack of metasurfaces, each supporting multiple independently controlled quasi-bound states in the continuum, molds the optical wavefront distinctively at multiple wavelengths and yet stay transparent over the rest of the spectrum. Such a platform is scalable to the visible for applications in augmented reality and transparent displays.Nonlocal metasurfaces are demonstrated that offer both spatial and spectral control of light, realizing metalenses focusing light exclusively over a narrowband resonance while leaving off-resonant frequencies unaffected.
Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser
Photoacoustic spectroscopy (PAS) as a highly sensitive and selective trace gas detection technique has extremely broad application in many fields. However, the laser sources currently used in PAS limit the sensing performance. Compared to diode laser and quantum cascade laser, the solid-state laser has the merits of high optical power, excellent beam quality, and wide tuning range. Here we present a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser used as light source in a PAS sensor for trace gas detection. The self-built solid-state laser had an emission wavelength of ~2 μm with Tm:YAP crystal as the gain material, with an excellent wavelength and optical power stability as well as a high beam quality. The wide wavelength tuning range of 9.44 nm covers the absorption spectra of water and ammonia, with a maximum optical power of ~130 mW, allowing dual gas detection with a single laser source. The solid-state laser was used as light source in three different photoacoustic detection techniques: standard PAS with microphone, and external- and intra-cavity quartz-enhanced photoacoustic spectroscopy (QEPAS), proving that solid-state laser is an attractive excitation source in photoacoustic spectroscopy.
Achievements, challenges, and future prospects for industrialization of perovskite solar cells
In just over a decade, certified single-junction perovskite solar cells (PSCs) boast an impressive power conversion efficiency (PCE) of 26.1%. Such outstanding performance makes it highly viable for further development. Here, we have meticulously outlined challenges that arose during the industrialization of PSCs and proposed their corresponding solutions based on extensive research. We discussed the main challenges in this field including technological limitations, multi-scenario applications, sustainable development, etc. Mature photovoltaic solutions provide the perovskite community with invaluable insights for overcoming the challenges of industrialization. In the upcoming stages of PSCs advancement, it has become evident that addressing the challenges concerning long-term stability and sustainability is paramount. In this manner, we can facilitate a more effective integration of PSCs into our daily lives.This review summarized the challenges in the industrialization of perovskite solar cells (PSCs), encompassing technological limitations, multi-scenario applications, and sustainable development. Additionally, the focus of future advancements in PSCs was discussed.
Whole-infrared-band camouflage with dual-band radiative heat dissipation
Advanced multispectral detection technologies have emerged as a significant threat to objects, necessitating the use of multiband camouflage. However, achieving effective camouflage and thermal management across the entire infrared spectrum, especially the short-wave infrared (SWIR) band, remains challenging. This paper proposes a multilayer wavelength-selective emitter that achieves effective camouflage across the entire infrared spectrum, including the near-infrared (NIR), SWIR, mid-wave infrared (MWIR), and long-wave infrared (LWIR) bands, as well as the visible (VIS) band. Furthermore, the emitter enables radiative heat dissipation in two non-atmospheric windows (2.5–3 μm and 5–8 μm). The emitter’s properties are characterized by low emittance of 0.270/0.042/0.218 in the SWIR/MWIR/LWIR bands, and low reflectance of 0.129/0.281 in the VIS/NIR bands. Moreover, the high emittance of 0.742/0.473 in the two non-atmospheric windows ensures efficient radiative heat dissipation, which results in a temperature decrement of 14.4 °C compared to the Cr reference at 2000 W m −2 input power density. This work highlights the role of solar radiance in camouflage, and provides a comprehensive guideline for developing multiband camouflage compatible with radiative heat dissipation, from the visible to LWIR.
Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials
Optical phase shifters constitute the fundamental building blocks that enable programmable photonic integrated circuits (PICs)—the cornerstone of on-chip classical and quantum optical technologies [ 1 , 2 ]. Thus far, carrier modulation and thermo-optical effect are the chosen phenomena for ultrafast and low-loss phase shifters, respectively; however, the state and information they carry are lost once the power is turned off—they are volatile. The volatility not only compromises energy efficiency due to their demand for constant power supply, but also precludes them from emerging applications such as in-memory computing. To circumvent this limitation, we introduce a phase shifting mechanism that exploits the nonvolatile refractive index modulation upon structural phase transition of Sb 2 Se 3 , a bi-state transparent phase change material (PCM). A zero-static power and electrically-driven phase shifter is realized on a CMOS-backend silicon-on-insulator platform, featuring record phase modulation up to 0.09 π/µm and a low insertion loss of 0.3 dB/π, which can be further improved upon streamlined design. Furthermore, we demonstrate phase and extinction ratio trimming of ring resonators and pioneer a one-step partial amorphization scheme to enhance speed and energy efficiency of PCM devices. A diverse cohort of programmable photonic devices is demonstrated based on the ultra-compact PCM phase shifter.
Recent progress in quantum photonic chips for quantum communication and internet
Recent years have witnessed significant progress in quantum communication and quantum internet with the emerging quantum photonic chips, whose characteristics of scalability, stability, and low cost, flourish and open up new possibilities in miniaturized footprints. Here, we provide an overview of the advances in quantum photonic chips for quantum communication, beginning with a summary of the prevalent photonic integrated fabrication platforms and key components for integrated quantum communication systems. We then discuss a range of quantum communication applications, such as quantum key distribution and quantum teleportation. Finally, the review culminates with a perspective on challenges towards high-performance chip-based quantum communication, as well as a glimpse into future opportunities for integrated quantum networks.